Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

Table of Contents

Part |

Part lI
1

2
3
4

Part Il

1
2
3

Part IV

o O~ W N P

Part

Frontpage 4
Introduction 5
oY (7= 1K Y o PP 5
ATAT A Q= Lo T U o> Y 1o L 5
AVAY A A= Y/ 1 U o= Vg ¥ Lo A e [T 6
[() YA (o T o] o Lol =T =Y o L PP TUPTRTPTN 7
Scripting 7
[y e o= [F=To BV 2 o F T o) RPN 7
MOTFE DOCUMENTALION 1. eeeiii ettt et e et et et e e e ean s 8
LT U IS Yol o] o) S TP UPTTUPT 8
Integration 11
COM AULOMALTON L.ttt e e et e et et e et e et e e et e e e e e e eean s 12
WiINAOWS SCHPLING HOSE .ouiieiie et e e e e e e e en e enees 13
R U = Y 5 PR 14
LBV B e 15
Y41 0 o PP 16
101 =] £ TP PTUP TP PPT 18
Tutorial 19
YT A1 oA U1 (o] 1y - Yo 1= P 19
Start the apPPliCaALION ... 19
Preparing MeEeasUIEIMENT ... ettt et e e et e e e e e e e enaeens 21
APProaching the SUMACEcooiiii e 22
SCAN @ SUMACE et ettt e e et ean s 23
Withdraw tip from SUMACEie e e e e e aae e 24
Simple image data analySiScouiiiii 24
DoCUMENT NANAIING .eeiiiiei et ens 25
Script examples 26
Taa = Ve T Yo AN e J U I A] o o 1= N 26
Create Height HiSLOGram ...t e 30
Erase glitch from line ... e e 32
Export data to CSV With HEAAEI . ..u.iee i e 34

©2022 by Nanosurf, all rights reserved

Contents 3

5 Timer controlled iMaging .o....ceeuiiii et e e e 36
B LIt O g AP Y e e 38
Part VIl Object Reference 40
N o o1 o= 14 o Y o 41
2 APPIOACK Lo et 83
G T = 7o X o] 11V = W =Y 1= 96
R @1 - ¥ SO PP PTRUPTRRPTRRN 117
ST I - L= PP 129
(OB (o 1o U 11 1 1=T o | AP PT P TPRPTPRN 157
2 1 1 (o T PPN 189
S 11 Lo PP 200
LS @ o 1= = L4 o 1Y (o Lo = 212
O Yo7 1o PP 234
L1 SCANHEAM .o e et 276
12 SIGNAITO oo 308
L3 P C iuiit it 317
14 SPMCIITDAtASIIEAIM ..uitiiie e ettt e e e e et et et e e e e eans 356
SIS Y (@ 411> = o = PP 359
G = Yo 1= PP 361
S A1 1] ¢ PP 384
RS YT o 1= o 397
19 ThEIMAl TUNE Lo e et et et et e e e e e e e e eans 408
20 ZCONTIIOIIBT . aes 428
Part VIII Version history 436

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

1

Frontpage
for Nanosurf Scripting Interface
v3.10.1.x

©2022 by Nanosurf, all rights reserved
BT01681, v3.10.1.x

©2022 by Nanosurf, all rights reserved

Frontpage 5

2 Introduction

This manual is meant as a reference for the COM Automation interface of the Nanosurf
software. This manual consists of two parts. The first part contains an explanation of the
concepts behind the interface. This part should be read entirely to understand the concept
of COM Automation, scripting and how it is implemented in the software. The second part
is a object reference of all classes with their method and properties published by
Nanosurf. In this part it is recommended to read the entry page for each class to get an
overview what these classes functionality is. Afterwards it can be read method or property
wise, when a exact understanding of specific functions is needed.

This manual does not describe general usage of the microscopy. Please read for general
understanding the Nanosurf Operating Instruction Manual and the Nanosurf Software
Reference Manual.

2.1 Motivation

Microscopy is a wonderful technology with a large amount of possibilities for data analysis.
The Nanosurf control software tries to offer a graphical user interface to the most general
tasks used by operators in a daily manner. Nevertheless, there are many thinkable tasks
specific for a single application used only by a small group of users. To integrate these
functions into the core of the software would blow it up and the simplicity would fade away.
Other groups of users are very advanced and like to write custom analysis or automation
sequences. They need a way to do their new experiments. Third, some would like to
integrate or combine the microscopy with other equipment like motorized sample stages,
manufacturing equipment, scratch testers or others. They also need a possibility to let the
different instruments work smoothly together and act as one new machine.

Therefore Nanosurf has developed an scripting interface and new menu items to the
control software to help all group of users. The users which are interested to automate
daily tasks are able to write a script once which defines the custom task. The script is
called comfortably by a click of the mouse from the pull down menu. The advanced users
would like the integrated script editor to program new measurement modes or create their
own analysis algorithms. Integrators possibly will use the external script interface to write
complete new interfaces or control the microscopy out of another software like LabView
and Python.

2.2 Whatyou cando

The script objects give you access to online microscope controls as scan range or
feedback set point. Other objects serve for post processing of data and control the
visualization of them. A script may extract measured data, create new data and store it in
a image document. Most of the user interface data entry fields of the panels are
accessible as object properties.

You may call methods from other objects like windows operating system objects, Internet
Explorer, Microsoft Word and many other vendors applications, ...

Many possible applications for scripting are:

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

2.3

e Automation of repetitive tasks like
- Scripts which Approach to sample, take an image, and store it
- Scripts which loads special parameter sets and start a process for quality control
purpose

e Write custom data analysis algorithms
- Scripts which calculate the volume of a hole in a image or count grains
- Scripts which calculate height histogram or subtract two images
- Scripts which calculates calibration information from a spectroscopy measurement

e Extending the functionality
- Scripts which measure multiple images at the same position every 30min and store
them
- Scripts which measure large high resolution images as a patch work and plot them in
one resulting image
- Scripts which provide lithography functionality and control the tip position

¢ Building complex new systems
- External scripts which controls an automated XY-table and moves the microscope to
different image locations
- Scripts which control additional experiment equipment like a temperature controller or
light sources

More ideas you will find in the chapter Scripting Examples

We hope we could give you some ideas what can be done with the scripting interface. Try
it out and create new applications!

What you cannot do

With the scripting interface you gain access to internal functions and data of the
microscopy control software "Nanosurf". This is the PC part of the microscopy control
software which provides access to microscope functionality and post processing of
stored image documents. For real time controlling of the microscope itself an external
control electronics with its own software in a flash RAMis used. The script interface does
not give you access to this firmware.

Therefore real time processing or signal modification is not possible. You cannot create
new z feedback control algorithm, real time filtering of signals or create custom new
operating modes.

©2022 by Nanosurf, all rights reserved

Introduction 7

24

3.1

How to proceed

Depending on your knowledge of scripting under Microsoft Windows operating system you
may need to read some chapter carefully or just skip them:

¢ This Introduction chapter gave you an overview of the possibilities of the scripting
interface

e Chapter Scripting describes the general concept of scripting technology.

¢ With chapter Integration you learn how to integrate the software with other application.

e The Tutorial is a step by step example of a short script.

e More examples are provided in chapter Script examples.

¢ Finally chapter Object Reference describes all properties and method of Nanosurf script
classes.

Scripting

In this chapter we will look to the embedded script command interpreter. The connection
with external programs is described in chapter Integration.

The term "scripting" means adding functionality to an existing application from external
sources at run time. Such sources can be another running program or at run time by a
embedded command interpreter the application itself.

Embedded VBScript

In the Nanosurf software a command language interpreter is built in, called "VBScript".
This programming language was defined by Microsoft for the main usage of building
interactive HTML web pages. It supports a subset of Visual Basic commands and
features. A formerly known similar programming environment was "Visual Basic for
Application”, in short VBA, which was implemented in old versions of Word or Excel.

A basic hello world program example looks like this:

start of script
msg = "Hello World!"
MsgBox msg
"end of script

Copy this example into the Script editor and click "Run” (See Script editor).

The functionality of the microscope application is grouped into object of different classes.
Each class provides some properties and methods to get access to the application
internals. There is a main object called "SPM.Application”. This object is automatically
defined if you run your script from the embedded script editor or menu item "Script".

Otherwise you have to create one with function
CreateObject("Nanosurf_C3000.Application™).

A full description of the available classes with their methods and properties you find in
chapter Object Reference.

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

To just simulate a click to the "Start" button in the "Imaging Window" see the following
example:

connect to scan object

Set obj Scan = SPM Appl i cation. Scan
call start nethod

obj Scan. Start

"di sconnect from scan object

set obj Scan = nothing

Copy this example into the Script editor and click "Run” (See Script editor).

Go to More Documentation and find links to sources where VBScript is explained.

More Documentation

We cannot give you a full overview of the scripting. Also describing the full language of
VBScript would go over the focus of this manual. But there are many good resources on
the internet which can guide you. Here are some useful links:

VBScript tutorials and function references:

www.w3schools.com
https://www.dewguru.com/content/technologies/vbscript/home.html

Scripting technology and references from Microsoft:

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/
cc784547(v=ws.10)

Menu Script

To work with scripts there is the ribbon group "Scripting” in the Nanosurf software.

Script
Secripting

e The Nanosurf has an integrated script editor where you can develop your scripts and
run them. See Script editor section for details.

e Scripts can also be written in an external standard text editor like Notepad. They have to
be saved with file extension .vbs to be recognized as scripts by the application. To run
such stored scripts call menu "Run form file" (See Run from file).

e [f script files are placed in a special directory they appear as menu item in menu "Script"
(See Scripts as menu items).

©2022 by Nanosurf, all rights reserved

http://www.w3schools.com
http://www.devguru.com/Technologies/vbscript/quickref/vbscript_intro.html
http://msdn.microsoft.com/scripting
http://msdn.microsoft.com/scripting

Scripting 9

3.3.1 Script editor

The Nanosurf has an integrated script editor where you can develop your scripts, run,
load and save them.

Call Menu "Script"->"Scrip Editor" and a dialog appears. This dialog is mode less and
stays open while you can work with other parts of the application.

Script Editor Dialog:

Script Edit -4
= & P Run

In the editor field you can write scripts and run them immediately.

To store the script permanently click "Save...", to load another script from file into the
editor click "Load...".

©2022 by Nanosurf, all rights reserved

10

Script Programmers Manual

3.3.2

3.3.3

3.34

Run from file
With menu item "Script"->"Run form file..." you get a quick access to stored scripts.

%

Script

Examples k i
I Create Height Histogram I

Erase glitch from line
i Imaging - Adjust Slope |

Run from file...

Select in the in the appearing file dialog the desired script file and click "Load". The script
will be loaded and run directly. If an error is detected in the script a dialog will appear with
a description.

Scripts as menu items

To get even more quick access to stored scripts it is possible to display script file names
in the pull down menu "Script" as menu items.

If you click on one of these menu items the script will be loaded and executed
immediately.

Script | Opkions Window

Script editar, ..

Fun From Ffile. ..

Remain Scantime

In the example above the file "Test Script.vbs" is displayed in the menu as an item. If you
click on it file "Test script.vbs" will be loaded and executed.

If an error is detected in the script a dialog will appear with a description.

The files which are displayed in the pull down menu have to be stored in a special
directory. The directory name can be defined with the Script configuration dialog.

Script configuration

The quick access script files which are displayed in the pull down menu as items have to
be stored in a special directory.

To tell the application your script menu folder, open the configuration dialog with Ribbon

©2022 by Nanosurf, all rights reserved

Scripting 11

"File", Menu "Options", ltem "Scripting":

Options

Quick Access Toolb,.. Script menu

User Interface

Acquisition Files:

Color Palette
. Analysis Files:

[
Scripting
Reporting
Gallery Settings

Access Code

Enter a valid directory name in the edit field or select one by click to "Browse".
Leave the dialog by a click to "OK".

All files with the extension ".vbs" in this selected directory are displayed now in the pull
down menu "Script". See Scripts as menu items.

4 Integration

To control the Nanosurf software from an external program the application can act as a
server according to the COM Automation standard defined by Microsoft. Many
programming environments and software packages are able to access the application as
a client through this interface standard:

©2022 by Nanosurf, all rights reserved

12

Script Programmers Manual

4.1

Some programming environments:

Visual C++, Visual Basic, Delphi, Windows Scripting Host, LabView, ...

Other software packages:
MathLab, MathCAD, Excel, Word, Internet Explorer, ...

Most of the scripts written for embedding into the application can be called with minor or
no changes with the help of the Windows Scripting Host (short WSH) which is part of the
Windows operating system. If you double click to a vbs-file you start the application

W Script.exe and the script is interpreted there (See Windows Scripting Host).

For some programming environment the following sections give a quick guide on how to
interface to the COM Automation server.

COM Automation

The abbreviation COM stands for '‘Component Object Model', which is a Microsoft
standard for building interoperable software components. The COM standard describes
how a program (called server) can publish its functionality to other programs (called
client). The clients can then use the functions of the server using this published
information. The functionality can even be used if the client and server are on different
computers, connected by a network, independent of the programming language in which
the programs were written.

The COM automation standard is defined using the COM standard. The COM automation
standard was necessary because the basic COM standard only defines the internal
principle how to access the functions of a server by a client. But the client needs prior to
its own compilation the information about the servers function details in order to be able to
access them. This is a problem for scripting languages like Visual Basic or other
programs like LabView which should be able to access unknown servers during run time.
This problem was solved by the COM Automation standard.

A COM Automation Server publishes its functionality in such a way that COM Automation
Clients can ask the server during run time about its functions and access them
afterwards. Microsoft defined for this purpose the Dispatch interface definition. The
Dispatch information about the servers function are stored in the servers exe-file, and in a
binary file with the extension ".tlb" which can be loaded by a client if early binding is
necessary or to build class wrapper.

The Dispatch interface of the Nanosurf software is defined in the file
"Nanosurf_C3000".tlb.

The root interface is named "Nanosurf_C3000.Application" and is the only named interface
which can be created by CreateObject(). All other sub objects are created by this root

©2022 by Nanosurf, all rights reserved

Integration 13

object.

4.2 Windows Scripting Host

You can control all of the functionality of the Nanosurf from a windows shell script. In
newer version of the Windows operating systems (starting from Windows 98/2000)
Microsoft distributes the so called Windows Scripting Host (W SH). With the WSH you are
able to write shell scripts in a language like Visual Basic Script (.vbs, VBScript) or
JavaScript (.js). VBScript is also used in applications like Internet Explorer, Word or Excel
to give to user the possibility to enhance the functionality of this software package.

You can use either the window based host W Script.exe or the command shell host
CScript.exe to execute scripts.

There are many documentation about the windows scripting host as books or online. See
More Documentation.

Scripts have to be stored in files. The extension of the file defines the program language
the scripting host is using.

Example

1. Open a Editor (e.g Notepad.exe) and copy the following script text into it:

' VBScript exanple: Measure an i mage

connect to m croscope
Di m obj App : Set obj App = CreateObject("Nanosurf_C3000. Application")
obj App. Si nul ati on = True
Do Wil e objApp.IsStartingUp : Loop

'scan an i nmage

Di m obj Scan : Set obj Scan = obj App. Scan
obj Scan. Lines = 16

obj Scan. Scantinme = 0

obj Scan. St art FrameUp

Do Wil e obj Scan.IsScanning : Loop

obj Scan. Start Capture

"di sconnect from objects
Set obj Scan = Not hi ng
Set obj App = Not hi ng

Save the script to a file. Name the file "MyScript.vbs"
Open the File Explorer and navigate to the stored file.
Double click on icon "MyScript.vbs"

W Script.exe should be executed and run your script.

arLDN

©2022 by Nanosurf, all rights reserved

14

Script Programmers Manual

4.3

6. The Nanosurf should start and a quick dummy image should be measured

Visual C++
This section describes how to integrate the Nanosurf object interface with Visual C++ 6.

Visual C++ 6 provides a wizard to integrate the Nanosurf object interfaces in an
application. The wizard generates for each COM interface a C++ wrapper class. The
information about the COM interface reads the wizard from the Nanosurf_C3000.tbl file.
This file is distributed with the installation of the application.

If you would like to call some methods or properties from an application follow these
steps.

e Create a new dialog based project. Make sure that "Automation" in the Project Wizard
Step 3 is activated.

e Start the wizard. Open the "Class Wizard" and click on "Add class...", select "From a
typlibrary...". In the "File Dialog" select the Nanosurf_C3000.tbl from the C:\Program files
\Nanosurf\Nanosurf\Bin directory. In the next dialog all available interfaces from
Nanosurf_C3000 are displayed and selected. Click "OK" to accept the names.

¢ Your project should have now new classes called IProxyXXXXX visible in the class tree

e Add the variable | ProxyAppl i cati on m obj App to the dialog class definition and insert
#i ncl ude "Nanosurf_C3000. h" at the beginning.

¢ |In the OnInitDialog() function connect to the microscope with the following code

m_obj App. Cr eat eDi spat ch(" Nanosur f_C3000. Application");

whil e (m_obj App.IsStartingUp() != FALSE) ;

To call any method call obj.Methodname(arguments)
To set a property call obj.SetPropertyname(value)

To read a property call value = obj.GetPropertyname()

To connect to a subclass of the Nanosurf define a variable of this type and attach the
return value of the objApp.GetClassname() function to it. After usage of a class call
Det achDi spat ch() .

Example:

/'l dialog class header
#i ncl ude "Nanosurf _C3000. h"

CWDi al og {

©2022 by Nanosurf, all rights reserved

Integration 15

| ProxyApplication m obj App;
| ProxyScan m_obj Scan;

b

/1 dialog class inplenentation cpp-file
CWDi al og: : Onl ni tDi al og() {

/1 connect to server

m_obj App. Cr eat eDi spat ch(" Nanosurf_C3000. Application");
whil e (m_obj App.IsStartingUp() != FALSE) ;

m_obj Scan. Att achDi spat ch(m_obj App. Get Scan());

m_obj Scan. Set Scantinme(0.5); // [s]

4.4 Labview

Use LabView's ActiveX function blocks in the diagram of your virtual instrument to control
the functionality of the Nanosurf. Four function block types are needed:

* The 'ActiveX Open'-block to start the Nanosurf Server program
« The 'ActiveX Close'-block to stop the Nanosurf Server after executing the VI.
» The 'ActiveX Method'-block to call the Nanosurf methods to send it commands.

* The 'ActiveX Property'-block to read or write the Nanosurf properties to change and/or
read its configuration and status information .

Follow the procedure below on how to wire a ActiveX diagram:

e First, a connection between LabView and the Nanosurf software is established using the
‘ActiveX Open' function block.

¢ Place this block from the palette 'Functions->Communication->ActiveX'. Now connect
the block to the Nanosurf Software:

¢ Clicking the ActiveX Open block with the right mouse button and selecting the menu
item 'Select ActiveX...->Search'.

¢ Click the 'Browse' button in the dialog to search for the Nanosurf's type library with the
filename 'Nanosurf_C3000.tlb". This file is located in you Nanosurf installation directory,
which typically is 'C:\program files\Nanosurf\Nanosurf\Bin'. A list of creatable objects is
opened after selecting this file. This list contains the name 'Nanosurf_C3000.Application'
as creatable object.

e Select ‘Nanosurf_C3000.Application’ and click ‘OK'. The object is now connected to the
‘ActiveX Open' block. The outputs of this block should be connected to the
corresponding inputs of the other ActiveX function blocks. The example program uses
the Nanosurf_C3000 automation server properties to read or write the status and
settings of the Nanosurf. In order to do this, create an 'ActiveX Property' function block
and connect it to the 'ActiveX Open' block:

¢ Create the block analogous to the 'ActiveX Open' function block.

©2022 by Nanosurf, all rights reserved

16

Script Programmers Manual

4.5

¢ Select the specific property by clicking the lower part of the 'ActiveX Property' block with
the right mouse button, and select a property

e from the list in the 'Property>' submenu.

e Select whether to read or write the property using the menu item 'Change to read' or
'‘Change to write' in the same submenu. The current read/write status of the property is
indicated by a small arrow.

* The procedure is the same for method calls: Insert the block 'ActiveX Method', wire it
and select the desired method in the pop up menu. Take care to only call a method at a
timed interval, or a specific event, do not call it continuously.

¢ To close the Nanosurf Server you place the function block 'ActiveX Close' in the diagram
and wire its two inputs to the corresponding outputs of the 'ActiveX Open' block.

Refer to your LabView documentation and examples on ActiveX for more detailed
description on how to use the ActiveX function blocks.

Python

This section describes how to use Python to control Nanosurf instruments. The Python
scripts were tested with Python 3.8.

Quick installation procedure:

1. Ensure that Python is installed on the control computer. Windows 10 has Python
in Windows Store, but this source should not be used for our purpose. Instead,
use the latest Python release from www.python.org or Anaconda Python. Make
sure, it is installed for the current user, and not for all the users (requires
administrator rights). To test your Python installation, open the Windows
Command Prompt or the Windows PowerShell, type python there and press
Enter. You should see a Python prompt with the version number.

‘craerShell

= pythen

Pythén 3.8.1 (tags/v3.8.1:1b293b6, Dec 18 2019, 23:11:46) [MSC v.1916 64 bit (AMD64)] on win32

Type "help", "copyright", “credits" or "Ticense" for more information.
>>>

2. Install the Nanosurf Python module from PyPI, by opening the Windows Command
Prompt or Windows PowerShell and executing:

pip install nanosurf

or, if pip does not work due to network restrictions, by downloading the PyPI
package, unzipping it into a folder, and from this folder executing:

pyt hon setup. py install

3. Start the Nanosurf software, make sure it is communicating with the controller

©2022 by Nanosurf, all rights reserved

https://www.python.org/

Integration 17

(although the basic functionality would also work in the simulation mode).

4. Check that a valid “Scripting Interface” code is entered in the Nanosurf software,
under File -> Options -> Access Codes.

5. Python scripts can be edited with Notepad and executed in a Windows Command
Prompt, but we suggest using Visual Studio Code editor (code.visualstudio.com),
or any other code editor.

Example script:
i mport nanosurf

Create control object for the Nanosurf SPM controller.
spm = nanosurf. SPM)

application = spm application

application. AutoExit = Fal se

Creating various objects for the system control
scan = application. Scan
zcontroller = application.ZControll er

For exanple, we would like to change the Z controller settings
zcontroller.SetPoint = 70 # Set the setpoint to 70%

zcontrol |l er. PGai n 3100 # Set P-gain to 3100

zcontroller.lGain 3500 # Set |-gain to 3500

Change the Scan settings

scan. lmageWdth = 10 * le-6 # Set width of scan to 10 um
scan. | mageHei ght = 10 * l1le-6 # Set height of scan to 10 um
scan. CenterPosX = 1 * le-6 # X offset = 1 um

scan. CenterPosY = 5 * 1le-6 # Y offset = 5 um

scan. Aut oCapture = True # Turn on end-of-frame data capture
scan. Start() # Starts scanning

To run the script, open your favorite terminal in the folder with the script and execute:
pyt hon your _scri pt_nane. py

& Windows PowerShell

PS C:\TMP> python test.py
Test is successful!

Alternatively, use the terminal in the VSCode, or simply click the icon in the top right
corner.

©2022 by Nanosurf, all rights reserved

https://code.visualstudio.com/

18 Script Programmers Manual

Go Run Terminal Help

lestpy X
F OFEN EDITORS
- TMP
testpy

Try the new cross-platform PowerShell https://aka.ms/psco

reg

PS C:\TMP> & C:/Users/|ll/ AppData/Local/Programs/Pyt
hon/Python38/python.exe c:/TMP/test.py
Test is successful!

& CAUITLINE

5 MPM SCRIFTS PS C:\THP> I
Python 181 64-bit @ 0AD In1Codd Spacesd UTF-8 CRLF Python & 0O

For a full list of the objects, and their methods and properties, read the Chapter 7. Object

Reference.

46 Others

The integration procedure in third party programs are different but mostly follow a
common structure.

If a program support COM Automation it either can call the server command directly
during runtime with late binding like Visual Basic or can create some wrapper class or
object with the help of the "Nanosurf_C3000.tlb" file:

¢ With most of the interpreter languages like Visual Basic, JScript, Mathlab or Python
calling a COM Server object is done by defining a object variable and call a function like
CreateObject(), CreateDispatch() or similar.

e Other compiled programs created with languages like Visual C++ or Delphi you have to
first create a proxy class in the language itself. Most development platform help the
programmer with a wizard to do this. The information for the proxy classes is extracted
from the file "Nanosurf_C3000.tlb" installed with the Nanosurfapplication itself in the C:
\Program files\Nanosurf\Nanosurf\Bin directory.

For more help read the documentation of your client application. if you do not found the
corresponding chapter easily search for keywords like "COM Automation”, "ActiveX",
"OLE" or "Dispatch".

©2022 by Nanosurf, all rights reserved

Tutorial 19

5.1

5.2

Tutorial

This chapter is a step by step tutorial which shows you the basic elements of a script and
how to control the microscope.

After the tutorial you should be able to write your own scripts and know how to use the
properties and functions of the Nanosurf software. You can then start exploring the object
reference chapter to learn all the details.

Script "Autolmage”

The tutorial script "Autolmage” is a example script which shows basic operating concepts
of the microscope. It performs an fully automated approach, measure a topography
image, calculates the min and max values and save the image into a document file.

The script is very modular and many passages can be reused in your own scripts. It shall
help you as an starting point for own script. More scripts you will find in the chapter Script

examples.

The script can be executed in the simulator or on a real sample. As a sample we use the
10um calibration grid found in your Toolbox. If you use a High Resolution Scanner the
scan range will be automatically reduced.

To follow the tutorial enter new script code step by step in the embedded "Script
Editor" (See Script editor) or in an external editor like Notepad.

The script will be developed and discussed in 7 steps

. Step - Start the application, create the needed objects and release them

. Step - Prepare the measurement, set operating mode and Z-Controller settings
. Step - Approach to surface

. Step - Scan an image

. Step - Withdraw from surface

. Step - Calculate the min and max z height value and display the result

. Step - Save the image in a document to disk

NOoO U~ WNE

If you do not like to type in the source by your self you find the source in the directory:

C:\Program files\Nanosurf\Nanosurf\Scripts\Examples

Start the application

Step 1 Start the application

First of all we will write a program version header and force the interpreter to allow only
predefined variables. This help avoiding typing error bug which are difficult to find.

" Version 1.0 Nanosurf

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

Option Explicit

Then we need access to the methods of the application. Therefore we create a object
variable with the root class "Application”. If the application is not already started this will
start the software. Then we wait until the application is ready and have connected to the
Controller. This is done with our first usage of an internal method the application is
providing to us IsStartingUp. If you would like to get a full description about this method
read the description in the Object Reference Chapter section Class Application.

startup application and get all needed objects
Di m obj App : Set obj App = CreateObject (" Nanosurf_C3000. Application")
Do VWil e obj App.lsStartingUp : Loop

Next we create object to all the sub modules we what to use. This will be the Approach
class for approaching, the Scan class for imaging, the OperatingMode class for setting up
the preferred mode and the z-controller class for defining setpoint etc. Our root object can
give us object variable to all theses classes.

Di m obj Appr . Set obj Appr = obj App. Appr oach

Di m obj Scan . Set obj Scan = obj App. Scan

Di m obj OpMode : Set obj OpMode = obj App. Oper ati nghode
Di m obj ZCtrl : Set objzCtrl = obj App.ZController

Again if you like to know more read the section Class Application.

Now we let some space for the code from step 2to 7.

insert code for step 2 - 6 here
At the end of the program listing we need to tell the application that we do not need the

object any longer and we free the object variable in the opposite order as we created
them.

MsgBox "End of script"”

Set obj zZCtrl = Nothing
Set obj OpMbde = Not hi ng
Set obj Scan = Not hi ng
Set obj Appr = Not hi ng
Set obj App = Not hi ng

Its time to save our work. Click "Save"-Button and call the file "Autolmage Tutorial.vbs".
The ".vbs" is important. This marks the file as a VBScript executable.

Now we would like to test the code we just wrote and run it.

If you wrote your script in the Script Editor Dialog please click "Run”. The Position and the

©2022 by Nanosurf, all rights reserved

Tutorial 21

5.3

Imaging Window should open and a message dialog telling "end of script". If there where
mistyping errors a dialog with a error message should appear.

If you wrote your script in an external editor, double click the saved file in the explorer. The
Nanosurf application should start and the starting up dialog should appear. The Position
and the Imaging Window should open and a message dialog telling "end of script". If there
where mistyping errors a dialog with a error message should appear.

In case of an error message return to the source code navigate to the reported text line
and correct the error. Save the file and run it again. Repeat this until no error occurs
anymore.

You are prepared now for Step 2 - Preparing the measurement

Preparing measurement

Step 2 Preparing the measurement
We write now the code for setting up everything right to be able to approach afterwards.

We will now take use of the created objects from Step 1 and define our desired operating
mode condition and z-controller settings useful for measuring on the 10um calibration
grid. To do this we will write values to some properties of the class OperatingMode and
ZController. Detailed explanation read in the appropriate section in chapter Object
Reference.

St ep2: Preparing the nmeasurenent

obj OpMode. Operati ngMode = 3 ' Dynam ¢ node
obj OpMode. Cantil ever = 1 " NCLR

obj OpMode. Vi brati ngAnmpl = 0.1 'V
obj OpMode. Aut oVi brati ngFreq = True
obj ZCtrl.SetPoint = 50 '%

obj zCtrl.PGain = 10000

obj zCtrl .1 Gain = 1500

That's for now. Save your work again. Run it.

Still no action is done but you should see in the Operating Mode Panel and the Z-Controller
Panel that the mode and the settings have been changed to the values we set in the
script. You see the script acts here like a user would do. The script could also read the
propertied values and get the result of direct user input.

You are now ready for approach. Go to Step 3.

©2022 by Nanosurf, all rights reserved

22

Script Programmers Manual

5.4

Approaching the surface

Step 3 Approaching the surface

We write now the code for approaching automatically to the surface and check if
everything went well after it.

The class Approach is now our focus. The script is not moving fast to the surface as a
user would do in a first step because the script cannot interpret the video output and does
not know therefore when to stop close to the surface.

First we stop the automatically start of imaging after approach, this is nice for a user but
not for the script. Then we start the approach and wait until its finished.

Step3: Approaching the surface

obj Appr. Aut oSt art |l magi ng = Fal se
obj Appr. St art Approach
Do Whil e obj Appr.IlsMving : Loop

No we have either approached to the surface or a error has occurred. We check this with
the method Status and proceed if everything is ok. If not we withdraw from the surface and
open a Dialog to display an error message.

I f obj Appr.Status = 3 Then
insert script code of Step 4 to 7 here

El se ' approach error handling
obj Appr. Start W t hdr aw
MsgBox "Approach error " & objAppr.Status & " occurred. Wthdraw and exit."
Do Whil e obj Appr.I1sMving : Loop

End |f

That's for now. Save your work. To run it we have to be careful now because we move the
scan head to the sample if we use the real microscope! Prepare the sample put it under
the microscope and manually coarse approach the it. Now run the script. If you see in the
Video camera that anything is going wrong and the tip is crashing into the surface click
manually on "Retract".

We did our first real action. What is necessary is always to wait until the action is done if a
method's name is Start... to synchronize the script to the microscope. If you can do
something useful during the action. Just enter the script code in the po while ... Loop!

Next we program the image script code. Go to Step 4.

©2022 by Nanosurf, all rights reserved

Tutorial 23

5.5

Scan a surface

Step 4 Scan a surface

After the approach was successful we can prepare imaging and start the imaging
process. The class Scan doing all this for us.

First we set the imaging size and other properties to our desire. Insert the following code
in the If ... End If section of Step 3.

Dimsize : size = 50e-6 'm
obj Scan. | mageSi ze si ze, si ze
obj Scan. Scantime = 0.7 's
obj Scan. Poi nts 256

obj Scan. Li nes 256

The code above show how to use a variable to store constants and use it to deliver
arguments to a method.

No we start a single scan frame and wait until it's finished. During the wait we do some
fun. We print the current scan line in the status bar:

Dim curline
obj Scan. St art FrameUp
Do Wil e obj Scan.|sScanning :
curline = objScan. Currentline
obj App. Print StatusMsg "Current line =" & curline & ". Renaining lines =" &
(obj Scan. Lines - curline)
obj App. Sleep 1.0 's
Loop

As mentioned in the previous step we can do some useful things in the while loop and do
not have just to wait! The code above shows how you can enhance the application and
add features by your self not provided by the software.

That's for now. Save your work. To run it you should first withdraw if not already done and
start then the script. When everything went ok we should be able to watch the script
approaching and measure an image. Look to the bottom left side of the status bars during
scanning.

If you would like to speed up the example image change number of lines or scan speed.

Next we withdraw from surface. Go to Step 5.

©2022 by Nanosurf, all rights reserved

24

Script Programmers Manual

5.6

5.7

Withdraw tip from surface

Step 5 Withdraw from surface

To finish a measurement the tip should be retracted to a save position so that a user can
safely remove the sample without destroying the cantilever. Let's develop this code.

First we move carefully a small amount from the surface. Method StartWithdraw and a
wait loop is doing this.

Step5: Wthdraw from surface

obj Appr. Wt hdr awSt eps = 300
obj Appr. Start W t hdr aw
Do Whil e obj Appr.lsMving : Loop

Then we move away from surface to some larger distance. This is done by a fast Retract
which we stop after 3 seconds.

obj Appr. Start Retract
obj App. Sleep 3.0 's
obj Appr. St op

Save your work. Now you have a fully automated imaging script in hand.

But we will add some more features to it. Let's do some image analysis. Go to Step 6.

Simple image data analysis

Step 6 Image data analysis

As a post measuring image analysis we implement an algorithm which is detecting the
minimal and maximal z value measured.

The result is displayed in a message box dialog.

To do this we need to read in all image values and remember the lowest and highest value
we find. This is don in a two nested loops over all scan lines and all data points per scan
line. The function GetLine is providing us with the data values as a string. We convert this
into a VBScript array and process the values.

Step6: |Image analysis. Find mn and max val ue

Di m scanstring
Di m scanarray
Di m scanl i ne
Di m poi nt

Di m dat aval ue
Dimmn: mn=+1.0 " start val ue
Dimmax : max =

©2022 by Nanosurf, all rights reserved

Tutorial 25

5.8

| oop through all scan lines and get the val ues
For scanline = 0 To obj Scan. Lines-1

scanstring = obj Scan. GetLine(0, 1, scanline,0,1) ' Z-Topography channel, Filter
RAW Physical units

obj App. Print StatusMsg "Processing line " & scanline

search all data points in a scan line
scanarray = Split(scanstring,",")
For Each point In scanarray
dat aval ue = CDbl (poi nt)
check range
I f datavalue < mn Then
m n = dataval ue
End | f
I f dataval ue > max Then
max = dataval ue
End | f
Next
Next

MsgBox "M n value is " & Format Number(m n*1e6,3) & "um Max value is " &
For mat Nunber (max*1e6, 3) & "unf

Save your work. To test the calculation of this section create a new script just with the
algorithm. First enter the code of step 1 and then insert at the comment just this code of
step 6. Now run the new script. It is using the last measured image for it analysis.

Next we want do save the measured image. Go to Step 7.

Document handling

Step 7 Document handling

A good measurement is worth to be stored to disk. Therefore we create a new image
document window with the contents of the Imaging Window and save the document to
disk. We will ask the user about the filename in a input dialog.

Step7: Docunent handling. Save the scanned inmage to disk

obj Scan. St art Capture

Di m obj Doc : Set obj Doc

Dimfilenane : filename

If filenane <> "" Then
obj Doc. Save(fil ename)

End | f

obj App. DocGet Acti ve()
| nput Box(" Pl ease enter a filename:")

We are at the end of the tutorial. Please run the full script once through and think about
what's going on during the automated process is running.

©2022 by Nanosurf, all rights reserved

26

Script Programmers Manual

6.1

Hopefully you enjoyed writing this little example and got the kick to write your own script.

Remember you can create also object from other programs like Word or Excel and
control them too! What's about storing the result of a image or spectroscopy directly in an
Excel sheet ?

Script examples

In this chapter we provide additional example scripts to give you more ideas what you
could do with the scripting technology.

You find the source of this scripts
at C:\Program files\Nanosurf\Nanosurf\Scripts

or C:\Program files\Nanosurf\Nanosurf\Scripts\Examples

Table of example scripts:

Script name Description

Imaging Adjust XY-Slope Adjust the property X'Y-Slopes automatically

Create Height Histogram Create a new document with a height histogram chart

Erase glitch from line Remowves measurement errors in the current line

Export data to CSV with Sawes data points to a file in a custom defined format

Header

Timed Imaging Measure multiple images with a delay between the scans. Auto
saving and filename generation is included.

Lithography Scratch a shape onto a soft surface by moving the tip with high force
over the sample.

Imaging Adjust XY-Slope
This example demonstrates how calculate and correct the XY-Slopes during scan
automatically.

Traditional slope compensation is a time consuming process and needs many steps to
perform until the slopes are compensated

This script is performing all necessary steps involved to do this task. It executes the
following:

Step 1 Start a 0° Rotated Image Frame
Step 2 Read the last scan line and calculates the slope by Linear Regression algorithm
Step 3 Start a 90° rotated image frame

©2022 by Nanosurf, all rights reserved

Script examples 27

Step 4 Read the last scan line and calculates the slope by Linear Regression algorithm
Step 5 store the calculated slope values to X and Y-Slope property of the Scan object

Source

Script: I magi ng Adjust XY-Sl ope

Cal cul ates the 0 and 90 degree sl ope and
" adjusts both SlopeX and Y Paraneter.

This script is useful during imging.
It automates the slope correction process which
" woul d be a manual task.

vl. 2 5. 8. 2005, D.Braendlin, Nanosurf AG

Option Explicit

Di m obj App : Set obj App = SPM Application
Di m obj Scan : Set obj Scan = obj App. Scan
Cal | Main()

Set obj Scan = Not hi ng

Set obj App = Not hi ng

Dimrot : rot = objScan. Rotation
Dim ok : ok = vbFal se

I f Not obj App.|sObj (obj Scan) Then

MsgBox "Error: |maging wi ndow not active.", vbOKOnly, "Adj ust

Exit Sub
End |f

' adjust x axis

obj Scan. Rotation = 0
obj Scan. Start FrameUp
ok = Adj ust Fast Sl ope()
If ok Then

adj ust y axis
obj Scan. Rotation = 90
obj Scan. St art FrameUp
ok = Adj ust Fast Sl ope()
End If

If Not ok Then

MsgBox "Error: Rotation outside bounds.",vbOKOnly, "Adj ust

End |f

obj Scan. Rot ati on = rot
End Sub

Functi on Adj ust Fast Sl ope()

XY- Sl opes Script"

XYS| opes Script”

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

Adj ust Fast Sl ope = vbTrue

I f obj Scan. Get FrameDir() <> 0 Then
Do Wil e (objScan.Currentline < 0) And obj Scan.|sScanning : Loop
End | f

Di m RefLine : ReflLine = objScan.Currentline
If RefLine < O Then

Adj ust Fast Sl ope = vbFal se

Exit Function
End If

Di m Fast Sl ope : Fast Sl ope = Cal cl nagei ngSl ope(Ref Li ne)

Di m maxdevi ation : maxdevi ati on = 10 ' degree

| f abs(obj Scan. Rotation) < maxdevi ati on Then
obj Scan. Sl opeX = obj Scan. Sl opeX - Fast Sl ope

El sel f abs(obj Scan. Rotation - 90) < maxdevi ation Then
obj Scan. Sl opeY = obj Scan. Sl opeY - Fast Sl ope

El sel f abs(obj Scan. Rotation - 180) < naxdeviation Then
obj Scan. Sl opeX = obj Scan. Sl opeX + Fast Sl ope

El sel f abs(obj Scan. Rotation + 90) < maxdevi ation Then
obj Scan. Sl opeY = obj Scan. Sl opeY + Fast Sl ope

El se
Adj ust Fast Sl ope = vbFal se
Exit Function

End If

End Function

Dim sl ope : slope = 0.0
Dimi =0

Di m dataline : dataline = obj Scan. GetLine(0, 1, scanline_In,Q0,1)
Di m zarray . zarray = split(dataline,",")

Dim xstep : xstep = objScan.lmgeWdth / (objScan.Points -1)
Di m xarray : ReDi m xarray(UBound(zarray))
xarray(0) = 0.0
For i=1 To (UBound(xarray))
xarray(i) = xstep*i
Next

Dimlin_coeff
Di m ok : ok = Cal cLi nearRegress(xarray, zarray, |l in_coeff)
I f ok Then
slope = lin_coeff(1) * 180.0 / 3.14159265
End |f

Cal cl magei ngSl ope = sl ope
End Function

©2022 by Nanosurf, all rights reserved

Script examples

Di m points : points = UBound(posarray_In)

Di m val s : vals = UBound(val array_In)
Dmi : i =0
DDmm: m=20
Dmqg: qg=20

Cal cLi near Regress = vbFal se

i nput check: array need to have same |ength
I f points <> vals Then

Exit Function
End If

calc intermediat results
Dms x : s x =0
For i=0 To points

S X = s_X + posarray_In(i)
Next

Dims_x2 : s_x2 =0
For i=0 To points

S X2 = s_x2 + posarray_In(i)*posarray_In(i)
Next

Dms.y : sy =0
For i=0 To points

s .y =s_y + valarray_In(i)
Next

Dims_xy : s_xy =0
For i=0 To points

S_ Xy = s_xy + posarray_In(i)*valarray_In(i)
Next

Dimdelta : delta = Cal cDet Of 2x2Matri x(poi nts+1,s_X,S_X, S_X2)

if slope not indefinit (90°) then calc q and m
If delta <> 0 Then

'y =g+ nfx

g=1.0/ delta * Cal cDet Of 2x2Matri x(s_y, S_X, S_XY, S_X2)

m=1.0

ReDi m coeffarray_out (2)
coeffarray_out (0) q
coeffarray_out (1) m
Cal cLi near Regress = vbTrue
End If
End Function

Cal cDet OF 2x2Matri x = all*a22 - al2*a2l
End Function

/ delta * Cal cDet Of 2x2Matri x(points+1,s_y,s_Xx,S_Xy)

29

©2022 by Nanosurf, all rights reserved

Script Programmers Manual

Create Height Histogram

This example demonstrates how to analyse a data container and create a new document
with calculated data.

The script is calculating a height histogram of the data points of the selected data
container and create a line chart with the result in a new document.

This script is performing all necessary steps involved to do this task. It executes the
following:

Step 1 Check if a data container is selected

Step 2 Calculate value range

Step 3 Calculate height histogram

Step 4 Create a new document with a data container and a chart
Step 5 Saves the histogram result to new the data container

Source

Script: Histogram

Cal cul ates a hei ght histogram based of the active
chart.

vl.1 1.8.2005, D.Braendlin, Nanosurf AG

Option Explicit
Di m obj App : Set obj App = SPM Application
Call Main()

get source data

Di m obj SrcDoc : Set obj SrcDoc = obj App. DocGet Acti ve()

I f Not obj App.IsObj (obj Srcboc) Then
MsgBox "Error: No docunent |oaded.",vbOKOnly, "Hi stogram Script"
Exit Sub

End I f

Di m obj SrcData : Set obj SrcData = obj SrcDoc. Dat aGet Active()
I f Not obj App.|sObj (obj SrcData) Then
MsgBox " Pl ease select a chart.", vbOKOnly, "Hi st ogram Scri pt"
Exit Sub
End If

Cal | CreateHi stogranDoc(obj SrcDat a)

End Sub

©2022 by Nanosurf, all rights reserved

Script examples

get data value range ------
obj App. PrintStatusMsg "Cal cul ating range ..."

Di m maxval , m nval
Cal cM nMax obj SDat a, 0, 1, m nval, maxval

prepare histogram container ------

obj App. DocCreat e("", Not hi ng)
obj Dest Doc. Dat aCreat e(- 1, - 1, Not hi ng)

Di m obj Dest Doc : Set obj Dest Doc
Di m obj Dest Data : Set obj Dest Dat a

obj Dest Doc. Dat aSet Gr oupNanme obj Dest Dat a. Get Gr oup(), "Hi st ogr ant'

obj Dest Data. Lines =1

obj Dest Dat a. Poi nts = 256

obj Dest Dat a. Axi sPoi nt M n = mnval

obj Dest Dat a. Axi sPoi nt Range = (maxval - mnval)

obj Dest Dat a. Axi sPoi nt Name = "Hei ght Distribution"
obj Dest Dat a. Axi sPointUnit = obj SDat a. Axi sSi gnal Uni t
obj Dest Dat a. Axi sSi gnal M n = -32768

obj Dest Dat a. Axi sSi gnal Range = 65535

obj Dest Dat a. Axi sSi gnal Nane

obj SDat a. Axi sSi gnal Name
obj Dest Dat a. Axi sSi gnal Unit = ""

obj Dest Dat a. Axi sLi neM n =0
obj Dest Dat a. Axi sLi neRange = obj Dest Dat a. Li nes
obj Dest Dat a. Axi sLi neName = ""
obj Dest Dat a. Axi sLineUnit = ""

create histogramdata ----------------------- -
obj App. Print StatusMsg "Cal cul ating histogram..."

Di m h_max
Di m hi stogram vec : histogramyvec =
Cal cHi st ogr am(obj SDat a, 256, m nval , maxval , h_max)
Dim ok : ok = obj DestDat a. Set Li ne(0, 0, Joi n(hi stogram vec,","))

di splay histogramchart -------------------------

Di m obj Dest Chart : Set obj DestChart = obj Dest Doc. Chart Create(-1, Not hi ng)
obj Dest Chart. Type 0 ' line chart

obj Dest Chart.Filter 0

obj Dest Chart. Group = obj DestData. Get Group()

obj Dest Chart. Si gnal = obj Dest Dat a. Get Si gnal ()

obj Dest Chart. RangeSpan = h_max
obj Dest Chart. RangeCenter = h_max / 2
End Sub

Di m hi stogram() : ReDi m hi stogram(resol ution-1)
Di m maxval ue : maxvalue = 0
Dim curlinestr, curlinearray, h, h_max

©2022 by Nanosurf, all rights reserved

32 Script Programmers Manual

Dimx,y

h_max = 0
If (mn_val < max_val) Then
For y = 0 To (objData. Lines-1)
curlinestr = obj Dat a. Get Li ne(y, 0, 1)
curlinearray = Split(curlinestr,”",")
For x = 0 To (obj Data. Points-1)
h = (CDbl (curlinearray(x))-mn_val)/(max_val-mn_val) * (resolution-1)
I f (h>=0) And (h<resol ution) Then
hi stogram h) = histogramh) + 1
I f histogram(h) > h_max Then
h_max = hi stogramh)
End If
End If
Next
Next
End If
h_max_out = h_max
Cal cHi st ogram = hi st ogram
End Function

Di m maxval : maxval = -1.0el00
Dimmnval : mnval = +1.0el100
Di m curdata, curarray, curval ue
Dim x,y

For y = 0 To (objData. Lines-1)
curdata = obj Data. Get Li ne(y,filter, node)
curarray = Split(curdata,",")
For x = 0 To (obj Data. Poi nts-1)
curvalue = CDbl (curarray(x))
I f maxval < curvalue Then

maxval = curval ue
End |f
If minval > curvalue Then
m nval = curval ue
End |f
Next
Next
max_out = maxva
m n_out = mnva
End Sub

6.3 Erase glitch from line
This example demonstrates in place data modification.

This script is modifying the measured data and removes measurement error like jumps in
height or small glitches occurring only in one data line.

It calculates new values for the current selected data line by replacing the data points with

©2022 by Nanosurf, all rights reserved

Script examples 33

the average of the points of its neighbor lines.

This script is performing all necessary steps involved to do this task. It executes the
following:

Step 1 Check if a data container is selected
Step 2 Extract the two neighbor lines of the selected one
Step 3 Replace the selected line with the average of the two other lines

Source

Script: Erase glitch fromline

Removes glitches from single data lines.
The current line of the active chart is processed.

The allgorithmuses the two nei ghbour lines as
references and cal cul ates new data val ues.

vl.1 9.8.2005, D.Braendlin, Nanosurf AG

Option Explicit

Di m obj App : Set obj App = SPM Application
Call Main()

Set obj App = Not hi ng

get source data

Di m obj SrcDoc : Set obj SrcDoc = obj App. DocGet Acti ve()

I f Not obj App.|sObj (obj SrcDoc) Then
MsgBox "Sorry, no docunent selected.",vbOKOnly, "Erase glitch"
Exit Sub

End If

Di m obj SrcData : Set objSrcData = obj SrcDoc. Dat aGet Active()
I f Not obj App.|sObj (obj SrcData) Then
MsgBox "Pl ease select a chart.",vbOKOnly, "Erase glitch"
Exit Sub
End | f

Dim ok : ok = RenopveSpi kes(obj SrcDat a, obj SrcDat a. Currentline)

I f Not ok Then
MsgBox "Sorry, this data cannot be processed." & vbCRLF & "Not enough
[ines.", vbOKOnly, "Erase glitch"
End If
End Sub

Functi on RempveSpi kes(obj Dat a, Li ne)

©2022 by Nanosurf, all rights reserved

34

Script Programmers Manual

6.4

RempoveSpi kes = vbFal se

I f Not obj App.IsObj (obj Data) Then
Exit Function
End If

If (Line >= objData.Lines) O (Line < 0) O (objData.Lines < 2) Then
Exit Function
End | f

get first referenc line

Dimlineldata

If Line < (objData.Lines-1) Then
l'ineldata = obj Dat a. Cet Li ne(Line+1, 0, 0)

El se
lineldata = obj Dat a. Get Li ne(Line-1,0,0)
End If
Dimlinelarray : linelarray = Split(lineldata,",")

get second referenc |ine
Dimline2data
If Line > 0 Then
l'ine2data = obj Dat a. Get Li ne(Line-1,0,0)

El se
line2data = obj Dat a. Get Li ne(Li ne+1, 0, 0)
End If
Dimline2array : line2array = Split(line2data,",")
get line of interest
Dim curdata : curdata = obj Data. GetLine(Line,0,D0)
Dim curarray : curarray = Split(curdata,",")

remove spikes
Di m x
For x = 0 To UBound(curarray)

curarray(x) = (Clnt(linelarray(x)) + Cint(line2array(x))) / 2
Next

curdata = Join(curarray,",")
obj Dat a. Set Li ne Line, 0, curdata

RemoveSpi kes = vbTrue
End Function

Export data to CSV with Header

This example demonstrates how to program an export function which saves measured
data to a file.

The internal export function of the application is enough for most of the data export
requirements. But some times a user want to export data in a customized way. This script
demonstrates how to do this.

This script is performing all necessary steps involved to do this task. It executes the

©2022 by Nanosurf, all rights reserved

Script examples

following:

Step 1 Check if a data container is selected
Step 2 Ask for a target filename
Step 3 Read all data from the container and saves them to file

Source

Script: Export data to CVS with Header

Saves current activated data to a file.

The data is saved as a conma separated value |ist
with a header

vi. 1 1.8.2005, Pieter van Schendel, Nanosurf AG

Option Explicit

Di m obj App : Set obj App = SPM Application
Cal |l Main()

Set obj App = Not hi ng

get source data --------

Di m obj SrcDoc : Set obj SrcDoc = obj App. DocGet Acti ve()
I f Not obj App.|sObj (obj SrcDoc) Then
MsgBox "Error: No docunent | oaded.",vbOKOnly, "Export
Exit Sub
End | f

Di m obj SrcData : Set objSrcData = obj SrcDoc. Dat aGet Ac
I f Not obj App.|sObj (obj SrcData) Then
MsgBox "Pl ease select a chart.",vbOKOnly, "Export Scri
Exit Sub
End | f

' Ask for file ------

Dim comdl g : Set condlg = CreateObject (" MSConDl g. Conmon
comdl g. Di al ogTitle = "Export the data as:"

comdl g.filter ="CSV file with header|*.csv"

comdl g. MaxFi | eSi ze = 260

comd| g. Cancel Error = Fal se

comd| g. ShowSave

save to disk ------
Dimtargetfile : targetfile = condlg.fil ename

If targetfile <> "" Then
Expart Dat aToFil e targetfil e, obj SrcData
End If
End Sub

Script"

tive()

pt*

Di al og")

35

©2022 by Nanosurf, all rights reserved

36

Script Programmers Manual

6.5

Sub Expart Dat aToFil e(fil ename, obj dat a)

Al'l oc objects ----
DimobjFS : Set objFS = CreateObject("Scripting.FileSystemObject")
Dim obj File: Set objFile= objFS. CreateTextFile(fil enanme)

write header -----

objFile.WiteLine "#Points: " & objdata. Points

obj File.WiteLine "#Lines : " & objdata.Lines
objFile.WiteLine "#Wdth : " & objdata. Axi sPoi nt Range
objFile.WiteLine "#Height: " & objdata. Axi sLi neRange

write data -------

Dim linedata

Dim curline

Dimlines : |lines = objdata.Lines

For curline = 0 To lines-1
linedata = objdata. GetLine(curline,0,1) ' RAWdata, physical units
objFile.WiteLine |linedata

Next

obj Fil e. Cl ose

cl ean up objects ----
Set obj File = Nothing
Set obj FS = Not hi ng
End Sub

Timer controlled imaging

This example demonstrates how to add a function to measure multiple images
autonomous.

If one want to study a surface sample over time to see drift or change in features a
possibility to do a series of measurements is needed.

To measure this series could be very time consuming and should be done automatically.

This script is doing exactly this. Measure a image, save it to disc , wait some time, and do
it again multiple time. It asks the user the amount of measurement to take, the delay time
between two measurements and a filename mask to know how to name the images.

The file mask is the path and the start of the resulting files. The script add to this mask a
counting number and the file extension (e.g A file mask of "D:\MyData\Mylmages" creates
the images in the directory D:\MyData with names like Mylmages1.nid, Mylmages2.nid,
and so on).

Source

Prog: Timed Imaging - nmeasure a set of images with delay and save the result to

©2022 by Nanosurf, all rights reserved

Script examples 37

Option Explicit
' startup application and get all needed objects
Di m obj App : Set obj App = SPM Application
Di m obj Scan : Set obj Scan = obj App. Scan

obj Scan. St op

Di m dTot al | mages : dTotal I mages = 1
Di m dl mageDel ay : dlmageDelay = 60.0
DimstrFilemask : strFilemask = "c:\Tined | nmage"

Ask user for details

Di m retval
retval = InputBox("Please enter the nunber of inmges to take","Script
request", dTot al | mages)
If retval >= 1 Then
dTot al | mages = retval

retval = InputBox("Please enter the delay tinme between to images in [s]","Script
request", dl mageDel ay)
If retval >= 1 Then
dl mageDel ay = retval

strFilemask = InputBox("Enter filename mask of the images. 'Cancel' if not
desired.","Script request",strFil emask)

Di m dCur | mage:
For dCurlmage = 1 To Clnt(dTotal | mages)

obj App. Print StatusMsg "Measuring i mage " & Format Nunmber (dCurl nage, 0) & " of
& For mat Nunber (dTot al | mages, 0)

obj Scan. St art FrameUp

Do Wil e obj Scan.|sScanning : Loop

obj Scan. St art Capture

If strFilemask <> "" Then
obj App. SaveDocunent strFil emask & For mat Number (dCurl mage,0) & ".nid"
End | f

If Clnt(dCurlmage) < Clnt(dTotal |l mages) Then
obj App. Print StatusMsg "Waiting for " & FormatNunber (dl nageDel ay,0) & "s

unti|l irmage " & Format Number (dCurl mage+1,0) & " of " & Format Nunber (dTot al | mages, 0)
& " is taken."
obj App. Sl eep dl mageDel ay
End I f

©2022 by Nanosurf, all rights reserved

38

Script Programmers Manual

6.6

Next
MsgBox "All inmages neasured. End of script”
El se
MsgBox "Bad delay tine. Script aborted.”
End If
El se
MsgBox "Bad nunber of inmges. Script aborted."
End If
Set obj Scan = Not hi ng
Set obj App = Not hi ng

Lithography

The aim of this script example is to demonstrate the use of the lithography script
commands.

This example will scratch a square shape into a sample surface.

It moves first with low set point force to the start point of the square shape, increases the
set point and moves four times to scratch the square shape into the surface. After this is
completed, it decreases the set point again to a standard not modifying value.

Before you run the script mount your sample and approach to it. Take also an image of
the surface before you scratch the shape.

For more general information about lithography please refer to the "Operating Instructions
manual.

" Script: Sinple lithography (Lithonodul e)

This script creates a square shape with
an edge length of 20.0 m croneter

The AFM static deflection node is used
to scratch the shape.

v1l.0 12.01. 2009, Adrian Gersbach, Nanosurf AG

Option Explicit
' startup application and get all needed objects
Di m obj App : Set obj App = SPM Application

Dim objLitho : Set objLitho = objApp.Litho
Di m obj Scan : Set obj Scan = obj App. Scan

call Main()

cl ean up
Set obj Scan = Not hi ng

©2022 by Nanosurf, all rights reserved

Script examples 39

Set obj Litho = Not hing
Set obj App = Not hi ng

" init variables
Dim fTi pSpeedUp : fTi pSpeedUp = 8. 0e-6
Di m f Ti pSpeedDown : fTi pSpeedDown = 4. Oe-6

Dim nXOf fset : nXOff set obj Scan. Cent er PosX
Dim nYOffset : nYOffset obj Scan. Cent er PosY
Dim nzOffset : nzZOffset = 0.0

clean up command |i st
obj Li t ho. Cl ear CndLi st

' add commands
obj Li t ho. AddCnd_PenUp

set opnode (AFM static deflection node)
obj Li t ho. Oper ati ngMode = 2

' set tipvoltage to 0.0 V
obj Li t ho. AddCnd_Ti pVol tage 0.0

set setpoint to 15.0uN
obj Li t ho. AddCnd_Set Poi nt 15. Oe-6

obj Li t ho. AddCnd_Ti pSpeed f Ti pSpeedUp

nove tip to start position
obj Li t ho. AddCnd_MoveTi p 10.0e-6 + nXOffset, 10.0e-6 + nYOffset, 0.0 + nZOffset

|l ower tip to start litho
obj Li t ho. AddCnd_PenDown

obj Li t ho. AddCnd_Ti pSpeed f Ti pSpeedDown

create a square shape

obj Li t ho. AddCnd_MoveTi p +10. 0e-6 + nXOffset, -10.0e-6 + nYOffset, 0.0 + nZOffset
obj Li t ho. AddCnd_MoveTi p -10.0e-6 + nXOffset, -10.0e-6 + nYOffset, 0.0 + nZOffset
obj Li t ho. AddCnd_MoveTi p -10.0e-6 + nXOffset, +10.0e-6 + nYOffset, 0.0 + nZOffset
obj Litho. AddCnd_MoveTi p +10.0e-6 + nXOffset, +10.0e-6 + nYOffset, 0.0 + nZOffset

retract tip
obj Li t ho. AddCnd_PenUp

obj Li t ho. AddCnd_Ti pSpeed f Ti pSpeedUp

nmove tip to center position
obj Li t ho. AddCnd_MoveTip 0.0 + nXOffset, 0.0 + nYOffset, 0.0 + nZOff set

' start lithography session
obj Litho. Start

wait untill litho session is finished
Do Whil e objLitho.lsWorking : Loop

©2022 by Nanosurf, all rights reserved

40

Script Programmers Manual

End Sub

Object Reference

This chapter describes in detail all the COM Interface objects of the Nanosurf program.

The complete functionality of the COM Interface is sorted in a hierarchical object structure.
Each sub object consists of a set of properties and methods for a special task.

The entry point of the class hierarchy is the COM class Nanosurf_C3000.Application for
external calls and SPM Appl i cat i on for internal calls.

It is providing general application specific properties and methods and it is the root to all
other objects of the Nanosurf program.

An overview about the defined classes is shown in the following table:

Main Class Function
Application Global application specific functions

Online Objects

System

Provides general online relevant system access functions

Approach Controls the approach process
Litho Provides lithography functions.
Scan Controls the imaging process
Spec Provides spectroscopy functions
ZController Z controller feedback loop settings

OperatingMode

Sensor operating mode and mode depending settings

Video

Video observation camera settings

ScanHead Provides scan head functions
SignallO Provides 10 functions

CantileverList

Provides access function to the cantilever database

SPMCtrIManager Provide access to advanced function of the C3000 controller
Stage Provides access to the stage backend

BatchManager

Provides access to the batch manager backend

Data Processing
Objects

Document

Represents a document with charts of measured data (as stored in
nid-Files)

©2022 by Nanosurf, all rights reserved

Object Reference 41

Chart Controls the visual representation of data values
Data Represents a block of data for a signal
Info Represents a set of measurement header information

7.1 Application
The Application class is providing general application specific properties and methods.

It is also the root for online classes which are provided as a property with the same name
as the class name.

Access to stored data are given by references to Document class objects by another set
of methods.

Retrieving a object pointer to the single instance of the Application class depends on the
origin of the caller:

¢ From a script inside the Nanosurf program (e.g A script written in the Script Editor) there
is the named item SPM with the property Application. A call to sPm Appl i cati on returns
an object pointer to the single instance of this class.

e From a external script (e.g WScript.exe) the script need to call
Cr eat eObj ect (" Nanosur f _C3000. Appl i cati on"). This will return a object pointer to the
single instance of this class.

Table of properties of Application class:

Property name Purpose

Approach Returns a object pointer to the single Approach class object
BatchManager Returns a object pointer to the single BatchManager class object
Litho Returns a object pointer to the single Litho class object

Scan Returns a object pointer to the single Scan class object
ScanHead Returns a object pointer to the single ScanHead class object
SignallO Returns a object pointer to the single SignallO class object
Spec Returns a object pointer to the single Spec class object

Stage Returns a object pointer to the single Stage class object
OperatingMode Returns a object pointer to the single Operating class object
ZController Returns a object pointer to the single ZController class object
Video Returns a object pointer to the single Video class object

System Returns a object pointer to the single System class object
SPMCtriManager Returns a object pointer to the single SPMCtrIManager class object

©2022 by Nanosurf, all rights reserved

42

Script Programmers Manual

CantileverList

Returns a object pointer to the single System class object

Version Returns the applications versions string

AutoEXit Close the application after end of script

Simulation Enable Simulation of Microscope

StatusReadDelay Sets the delay time used by all Status Properties read
Visible Show or hide the application

GalleryHistoryAutolndexing

Toggle auto-indexing when saving measurement files

Table of methods of Application class:

Methode name

Purpose

DocCount Return the number of open documents
DocCreate Create a new document object
DocDeleteAll Delete all open documents

DocDeleteByName

Delete document with given name

DocDeleteByPos Delete document at given position
DocGetActive Return document object to current document
DocGetByName Return document object with given name

DocGetByPos

Return document object at given position

GetGalleryHistoryDirectoryPath

Returns the actual path where the history files are stored

SetGalleryHistoryDirectoryPath

Defines the actual path where the history files are stored

GetGalleryHistoryFilenameMask

Returns the current history filename mask

SetGalleryHistoryFilenameMask

Defines the history filename mask

GetGalleryHistoryFilenamelndex

Returns the history filename index

SetGalleryHistoryFilenamelndex

Defines the history filename index

GetScriptDirectoryPath Returns the actual path where the script files are stored
SetScriptDirectoryPath Defines the actual path where the script files are stored
IsObj Checks if a given object variable is valid or not
IsStartingUp Monitors the application initialization process

LoadCalibration

Load a new scan head calibration from a hed-file

LoadChartArrangement Load a set of charts from file
LoadDocument Load a image document from file
LoadParameter Load a set of parameter from file

©2022 by Nanosurf, all rights reserved

Object Reference

43

LoadWorkspace Load a new workspace configuration from file

Log Simple logging of some message string

LOgEX Log a message with specific channel and log level
LogUserMarker Generate a user marker into the log system
PrintStatusMsg Print a message in the status bar

SaveCalibration

Save current scan head calibration to file

SawveChartArrangement Sawves current set of charts to file
SaveDocument Save current selected image document to file
SaveParameter Saves current set of parameter to file
SaveWorkspace Save current workspace configuration to file
Sleep Wait some seconds

Properties

Application::Approach

Returns a dispatch pointer to the sub class Approach. This property is read only.

Syntax

application.Approach [read only]

Result

The Approach property is returning a pointer to the IDispatch interface of the Approach

object.

Remarks

Only one single instance exists of Approach object. All successive read of this property
will return the same IDispatch pointer. A read of this property will also open the
"Position Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Nanosur f _C3000. Appl i cati on
obj App. Approach

Di m obj App : Set obj App
Di m obj Appr : Set obj Appr

do something with the object

©2022 by Nanosurf, all rights reserved

44 Script Programmers Manual

cl ean up
obj Appr = nul : Set obj Appr = Not hing
obj App = nul : Set objApp = Nothing
See also
Class Approach

7.1.1.2 Application::AutoExit
Returns or set the action at script termination.
Syntax

application.AutoExit [=flag]

Setting
Argument|Type Description
flag Boolean [Set to True if the application should close after last reference to
Application object is released otherwise to Fal se
Remarks

The AutoEXxit property is used when the script want to control the Nanosurf program
fully automatically and handle the startup and closing by itself. Set this property to True
anytime after startup is finished.

If AutoEXxit is set the application is closed after releasing the last reference to the
application object.

Example
open application

Di m obj App : Set obj App = CreateObject (" Nanosurf_C3000. Application")
Do Wil e objApp.lsStartingUp : Loop

do sonet hi ng

cl ose application program

obj App. Aut oExit = True
obj App = nul : Set obj App = Not hing

©2022 by Nanosurf, all rights reserved

Object Reference

See also

Method IsStartingUp

7.1.1.3 Application::BatchManager

45

Returns a dispatch pointer to the sub class BatchManager. This property is read only.

Syntax
application.BatchManager [read only]

Result

The BatchManager property is returning a pointer to the IDispatch interface of the

BatchManager object.

Remarks

Only one single instance exists of the BatchManager object. All successive read of this

property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to

do this.

Example
create object

Di m obj App : Set obj App
Di m obj Bat chManager : Set obj BatchManager

Nanosur f _C3000. Appl i cation
obj App. Bat chManager

do something with the object

cl ean up
obj Bat chManager = nul : Set obj BatchManager = Not hing
obj App = nul : Set obj App = Not hi ng
See also

Class BatchManager

©2022 by Nanosurf, all rights reserved

46 Script Programmers Manual

7.1.1.5 Application::Litho

Returns a dispatch pointer to the sub class Litho. This property is read only.
Syntax
application.Litho [read only]
Result
The Litho property is returning a pointer to the IDispatch interface of the Litho object.
Remarks
Only one single instance exists of Litho object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the

"Lithography Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Di m obj App : Set obj App = Nanosurf_C3000. Application
Di m objLitho : Set objLitho = obj App.Litho

do something with the object
clean up

objLitho = nul : Set objLitho = Nothing
obj App = nul : Set objApp = Nothing

See also

Class Litho

7.1.1.6 Application::OperatingMode

Returns a dispatch pointer to the sub class OperatingMode. This property is read only.
Syntax
application.OperatingMode [read only]

Result

©2022 by Nanosurf, all rights reserved

Object Reference 47

The Operating property is returning a pointer to the IDispatch interface of the
OperatingMode object.

Remarks

Only one single instance exists of OperatingMode object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Di m obj App . Set obj App = Nanosur f_C3000. Application
Di m obj OpMode : Set obj OpMode = obj App. Oper ati nghbde

do something with the object

cl ean up
obj OpMode = nul : Set obj OpMode = Not hi ng
obj App = nul : Set obj App = Not hi ng

See also

Class OperatingMode

7.1.1.7 Application::Scan

Returns a dispatch pointer to the sub class Scan. This property is read only.
Syntax
application.Scan [read only]
Result
The Scan property is returning a pointer to the IDispatch interface of the Scan object.
Remarks
Only one single instance exists of Scan object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the "Imaging

Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to

©2022 by Nanosurf, all rights reserved

48 Script Programmers Manual

do this.

Example
create object

Di m obj App : Set obj App = Nanosurf_C3000. Application
Di m obj Scan : Set obj Scan = obj App. Scan

do something with the object

cl ean up
obj Scan = nul : Set obj Scan = Not hing
obj App = nul : Set objApp = Nothing
See also
Class Scan

7.1.1.8 Application::ScanHead

Returns a dispatch pointer to the sub class ScanHead. This property is read only.
Syntax

application.ScanHead [read only]
Result

The ScanHead property is returning a pointer to the IDispatch interface of the
ScanHead object.

Remarks

Only one single instance exists of ScanHead object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Di m obj App : Set obj App = Nanosurf_C3000. Application
Di m obj ScanHead : Set obj ScanHead = obj App. ScanHead

do something with the object

©2022 by Nanosurf, all rights reserved

Object Reference

cl ean up

obj ScanHead = nul : Set obj ScanHead = Not hi ng
obj App = nul : Set objApp = Nothing

See also

Class ScanHead

7.1.1.9 Application::ShowWindow

Defines the display style of the main window.
Syntax

application.ShowWindow(style)
Arguments

Argument Type Description

style short Visibility style number
Result

None.

Remarks

The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example
obj App. ShowwW ndow(0) ' hide the inaging w ndow
See also

Application::Visible

49

©2022 by Nanosurf, all rights reserved

50 Script Programmers Manual

7.1.1.10 Application::SignallO

Returns a dispatch pointer to the sub class SignallO. This property is read only.
Syntax

application.SignallO [read only]
Result

The SignallO property is returning a pointer to the IDispatch interface of the SignallO
object.

Remarks

Only one single instance exists of SignallO object. All successive read of this property
will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Di m obj App : Set obj App = Nanosurf_C3000. Application
Di m obj Signal 1l O : Set obj Signall O = obj App. Signall O

do something with the object
clean up

obj Signal 1O = nul : Set objSignall O = Nothing
obj App = nul : Set objApp = Nothing

See also

Class SignallO

7.1.1.11 Application::Simulation

Returns or set the interface mode. In simulation mode the program is using an internal
microscope simulation as target.

Syntax

application.Simulation [= flag]

©2022 by Nanosurf, all rights reserved

Object Reference 51

Settings

Argument Type Description
flag Boolean Set to Tr ue if the application should simulate the microscope.

Set to Fal se to use the real microscope.

Remarks

The Simulation property is defining the interface to the microscope. If this property is
set to True a program internal simulation of a microscope and a surface is used. Most
of the functionality of the real scope is simulated.

Switching between simulation and real microscope can be performed any time. Each
microscope is initialized at switching. Use property IsStartingUp to wait for the end of
the switch.

A virtual surface can be imaged with the "Imaging Window" or the Scan object, with the
"Spectroscopy Window" or the Spec object a Tip Potential modulation can be
performed.

OperatingMode, ZController and Video object settings are not simulated and have no
influence in the simulation.

Example

open application
Di m obj App : Set obj App = Creat eObject (" Nanosurf_C3000. Application")
Do Wil e objApp.IsStartingUp : Loop

obj App. Si mul ation = True
Do Wil e objApp.lsStartingUp : Loop

See also

Class Scan, Spec, Property IsStartingUp

7.1.1.12 Application::Spec

Returns a dispatch pointer to the sub class Spec. This property is read only.
Syntax
application.Spec [read only]

Result

©2022 by Nanosurf, all rights reserved

52 Script Programmers Manual

The Spec property is returning a pointer to the IDispatch interface of the Spec object.

Remarks

Only one single instance exists of Spec object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the
"Specroscopy Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Di m obj App : Set obj App
Di m obj Spec : Set obj Spec

Nanosur f _C3000. Application
obj App. Spec

do something with the object
cl ean up

obj Spec = nul : Set obj Spec = Nothing
obj App = nul : Set objApp = Nothing

See also

Class Spec

7.1.1.13 Application::SPMCtrIManager
The SPM control manager handles access to the SPM subsystem.

A object pointer to this class is provided by the Application.SPMCtrIManager object
property.

Table of properties for the SPMCtrIManager class:

Property name Purpose

LogicalUnit Returns a object pointer to the single LogicalUnit class object
DataBuffer Returns a object pointer to the single DataBuffer class object
DataStream Returns a object pointer to the single DataStream class object
MacroCmd Returns a object pointer to the single MacroCmd class object

©2022 by Nanosurf, all rights reserved

Object Reference 53

7.1.1.14 Application::Stage

Returns a dispatch pointer to the sub class Stage. This property is read only.
Syntax

application.Stage [read only]
Result

The Stage property is returning a pointer to the IDispatch interface of the Stage object.

Remarks

Only one single instance exists of the Stage object. All successive read of this property
will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object

Di m obj App . Set obj App
Di m obj Stage : Set obj St age

Nanosur f _C3000. Application
obj App. St age

do something with the object

clean up
obj Stage = nul : Set obj Stage = Not hing
obj App = nul : Set obj App = Not hi ng
See also
Class Stage

7.1.1.15 Application::StatusReadDelay
Returns or set time usd to delay a read request by all status properties.

Syntax
application.StatusReadDelay [= time]

Settings

©2022 by Nanosurf, all rights reserved

54 Script Programmers Manual

Argument Type Description

time float Set or read the time used to delay each status request. Default value is
0.3s

Remarks

The StatusReadDelay property defines the time a status property waits until its read
the new status and return its value to the caller function.

During this wait time the Nanosurf application still performs its operation and is not
delayed.

The usage of this delay is to lower the CPU usage during a wait loop until a certain
status is reached by the script program.

All'obj.Is..." properties of the online classes are using these delay timer (e.g
objScan.IsScanning, objAppr.IsMoving, ...) .

The default value of 0.3s can be overwritten by setting the registry key ‘Nanosurf/
Application/ScriptingStatusReadDelay=0.3'

Example

open application
Di m obj App : Set obj App = CreateObject("Nanosurf _C3000. Application")
obj App. St at usReadDel ay = 0.0
Do Wil e obj App.IsStartingUp : Loop

See also

All Is... properties of classes Approach, Scan, Spec, OperatingMode, ZController

7.1.1.16 Application::System
Enter topic text here.

7.1.1.18 Application::Video

Returns a dispatch pointer to the sub class Video. This property is read only.
Syntax

application.Video [read only]
Result

The Video property is returning a pointer to the IDispatch interface of the Video object.

©2022 by Nanosurf, all rights reserved

Object Reference

Remarks

55

Only one single instance exists of Video object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the "Position

Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to

do this.
Example
create object

Di m obj App : Set obj App
Di m obj Video : Set obj Video

Nanosur f _C3000. Application
obj App. Vi deo

do sonmething with the object

cl ean up
obj Video = nul : Set objVideo = Nothing
obj App = nul : Set objApp = Nothing
See also
Class Video

7.1.1.19 Application::Visible

Returns or set the interface mode. In simulation mode the program is using an internal

microscope simulation as target.
Syntax

application.Visible [= flag]
Settings

Argument Type Description
flag Boolean Set "True" to show the application

Set "False" to hide the application

Remarks

If the application is started up using the COM interface it is hidden unless the user sets

"Visible" to "True".

©2022 by Nanosurf, all rights reserved

56

Script Programmers Manual

Example
open application
Di m obj App : Set obj App = Creat eObject (" Nanosurf_C3000. Application")
obj App. Visible = true
obj App. Visible = fal se
obj App = nul : Set objApp = Nothing

See also

Application::ShowWindow

7.1.1.20 Application:GalleryHistoryAutolndexing

Returns or set auto-indexing when creating filenames for NID files.
Syntax

application.GalleryHistoryAutolndexing [= flag]
Settings

Argument Type Description
flag Boolean Set "True" to enable auto-indexing (default)

Set "False" to disable auto-indexing

Remarks

If the filemask doesn't specify [INDEX] keyword, it is added when auto-indexing is
enabled.

If auto-indexing is disabled, [INDEX] is not added if it missing.

To have effect, it must be called before Application::SetGalleryHistoryFileMask.

Example

open application
Di m obj App : Set obj App = CreateObject (" Nanosurf _C3000. Application")

obj App. Gal | er yHi st or yAut ol ndexi ng = fal se
obj App. Set Gal | eryHi st oryFi | enameMask(" MyUni quel mage")

obj App = nul : Set objApp = Nothing

See also

©2022 by Nanosurf, all rights reserved

Object Reference 57

Application::SetGalleryHistoryFileMask

7.1.1.21 Application::ZController

Returns a dispatch pointer to the sub class ZController. This property is read only.
Syntax

application.ZController [read only]
Result

The ZController property is returning a pointer to the IDispatch interface of the
ZController object.

Remarks

Only one single instance exists of ZController object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

create object

Di m obj App : Set obj App
DimobjCtrl : Set objCtrl

Nanosur f _C3000. Application
obj App. ZControl | er

do sonmething with the object

cl ean up
objCtrl = nul : Set objCtrl = Nothing
obj App = nul : Set objApp = Nothing
See also

Class ZController

7.1.2 Methods

7.1.2.1 Application::DocCount

Return the number of open documents

Syntax

©2022 by Nanosurf, all rights reserved

58 Script Programmers Manual

val = app.DocCount()

Arguments

none.

Result

Result

Type

Description

\val

short

Returns the number of open document.

Remarks

The DocCount method counts the number of open document windows.

Example

docs = obj App. DocCount ()

See also

DocGetByPos Method.

7.1.2.2 Application::DocCreate

Returns a new document class object.

Syntax

objDoc = app.DocCreate(filename,srcobj)

Arguments

Argument(Type Description

filename |[string the document is loaded from disk or not if argument is " "

srcobj object the contents of the source document is copied if srcobj is not Not hi ng
Result

Result Type Description

objDoc Object Returns a IDispatch object for the document at position pos or an invalid

object

©2022 by Nanosurf, all rights reserved

Object Reference 59

Remarks

The DocCreate method returns a IDispatch object to a newly created document. The
new document is completely empty with no data objects, no info sections and no
charts. If the new document is a valid object can be checked by objApp.IsObj().

If the argument filename is not empty the contents of this NID-File is loaded into the
document.

If the argument srcobj is a valid document object its contents it copied into the new
document.

If both argument are defined the NID-File is loaded.

Example

create a new enpty docunent
Set obj Doc = obj App. DocCreate("", Not hi ng)

create a new docunent and | oad data fromfile
Set obj Doc = obj App. DocCreat e(" MyDocunent . ni d", Not hi ng)
I f Not obj App.IsObj (obj Doc) Then

MsgBox "File not found"
End |f

Copy current active docunent
Set obj SrcDoc = obj App. DocGet Acti ve()
Set obj Doc = obj App. DocCreate("", obj SrcDoc)

See also

Class Document, DocGetActive Method, IsObj Method

7.1.2.3 Application::DocDeleteAll

Close all open documents
Syntax

done = app.DocDeleteAll()
Arguments

None.
Result

Result Type Description

done Boolean Returns Tr ue if all document could be closed otherwise Fal se

©2022 by Nanosurf, all rights reserved

60

Script Programmers Manual

Remarks
The DocDeleteAll method closes all open documents.

Example

close all docunments
ok = obj App. DocDel eteAll ()
I f obj App. DocCount () > 0 Then

MsgBox "Error: Could not close all docunents"”
End | f

See also

Class Document, DocCount Method

7.1.2.4 Application::DocDeleteByName

Deletes the document with a specified filename
Syntax

done = app.DocDeleteByName(filename)
Arguments

Argument Type Description

flename string Close the document with this name

Result

Result Type Description

done Boolean Returns 1r ue if the document could be closed otherwise Fal se

Remarks

The DocDeleteByName method closes the document with the name filename.
The argument has to be a path string. If no document is found this method return ral se.

Example

cl ose active docunent
Set oDoc = obj App. DocGet Acti ve()
I f obj App.1sObj (oDoc) Then

obj App. DocDel et eByName(oDoc. Nane)
End | f

©2022 by Nanosurf, all rights reserved

Object Reference 61

See also

Class Document, DocGetActive Method, IsObj Method

7.1.2.5 Application::DocDeleteByPos
Deletes the n'th document
Syntax

done = app.DocDeleteByPos(pos)

Arguments

Argument Type Description

pos short Close the document at the specified position
Result

Result Type Description

done Boolean Returns True if the document could be closed otherwise Fal se
Remarks

The DocDeleteByPos method closes the document at position pos.
The argument has to be positive and lower than the value return by DocCount().

Example

cl ose | ast docunment
obj App. DocDel et eByPos(obj App. DocCount () - 1)

See also

Class Document, DocCount Method, IsObj Method

7.1.2.6 Application::DocGetActive

Returns a Document class object of the currently selected document

Syntax

©2022 by Nanosurf, all rights reserved

62 Script Programmers Manual

objDoc = app.DocGetActive()
Arguments
none.

Result

Result Type Description

objDoc Object Returns a IDispatch object to the selected document or an invalid object
if none is selected

Remarks

The DocGetActive method returns a IDispatch object to the currently active or
selected document. The selected document has a highlighted title bar. If no document

is loaded or active an invalid object is returned. This can be checked by
0bjApp.IsObj().

Example

Set obj Doc = obj App. DocGet Acti ve()

I f Not obj App.|sObj (obj Doc) Then
MsgBox "Pl ease sel ect an docunent”

el se

MsgBox "Current docunment is " & obj Doc. Name
End If

See also

Class Document

7.1.2.7 Application::DocGetByName

Returns a Document class object with the specified name.
Syntax

objDoc = app.DocGetByName(name)

Arguments

Argument|Type Description

name string Name of document
Result

©2022 by Nanosurf, all rights reserved

Object Reference 63

Result Type Description

objDoc Object Returns a IDispatch object to the document with the given name or an
invalid object if no document is not found

Remarks

The DocGetByName method returns a IDispatch object to the document with the
given name.

If no document with name is found a invalid object is returned. This can be checked by
0bjApp.IsObj().

The name of a document is its filename including the full path. The name of a
document which is not loaded from file or was never stored is its temporary filename
including the path to the backup directory.

Example

Set obj Doc = obj App. DocGet ByName(" mydoc. ni d")
I f Not obj App.IsObj (obj Doc) Then

MsgBox "Document not | oaded"
End | f

See also

Class Document

7.1.2.8 Application::DocGetByPos
Returns a Document class object at the specified position.
Syntax

objDoc = app.DocGetByPos(pos)

Arguments

Argument|Type Description

pos short Documents position number.
Result

Result Type Description

objDoc Object Returns a IDispatch object for the document at position pos or an invalid
object if pos >= DocCount()

©2022 by Nanosurf, all rights reserved

64

Script Programmers Manual

Remarks

The DocGetByPos method returns a IDispatch object to the document at the position.
If position is out of range an invalid object is returned. This can be checked by
0bjApp.IsODbj().

The position is the index into an list which keeps track of all open documents and
represents the nth document window as shown in the pull down menu "Window".

Example
opendocs = obj App. DocCount ()
For i = 0 To opendocs-1
Set obj Doc = obj App. DocGet ByPos(i)
MsgBox "Filename = " & obj Doc. Nanme
End For
See also

Class Document, DocCount Method, DocGetByName Method

7.1.2.9 Application::GetGalleryHistoryDirectoryPath

Returns the history file path to the directory where all *.nid-files will be stored, when
captured.

Syntax

filePath = app.GetGalleryHistoryDirectoryPath()

Arguments
Argument|Type Description
None

Result
Result Type Description

filepath String Returns a String

Remarks

None

©2022 by Nanosurf, all rights reserved

Object Reference 65

Example
path = obj App. Get Gal | eryHi st oryDi rect oryPat h()
MsgBox "Folder =" & path

See also

SetGalleryHistoryDirectoryPath

7.1.2.10 Application::GetGalleryHistoryFilenamelndex
Returns the index for the next file name.

Syntax

index = app.GetGalleryHistoryFilenamelndex()

Arguments

Argument|Type Description

None

Result

Result Type Description

index Number |Returns number > 0

Remarks
None

Example
i ndex = obj App. Get Gal | eryHi storyFi | enamel ndex()

See also

SetGalleryHistoryFilenamelndex

©2022 by Nanosurf, all rights reserved

66 Script Programmers Manual

7.1.2.11 Application::GetGalleryHistoryFilenameMask

Returns a Document class object at the specified position.
Syntax
fileNameMask = app.GetGalleryHistoryFilenameMask()

Arguments

Argument|Type Description

None

Result

Result Type Description

fileNameM |String Returns a String containing the filename mask e.g. "image[INDEX]"
ask

Remarks

Example
mask = obj App. Get Gal | eryHi st oryFi | enaneMask()

See also

SetGalleryHistoryFilenameMask

7.1.2.12 Application::GetScriptDirectoryPath

Returns the script file path to the directory where scripts are stored.
Syntax

filePath = app.GetScriptDirectoryPath(Index)

Arguments
Argument|Type Description
Index Number |0 - Index for measurement scripts
1 - Index for analyzing scripts
Result

©2022 by Nanosurf, all rights reserved

Object Reference 67

Result Type Description

filepath String Returns a String

Remarks
None
Example

path = obj App. Get Scri pt Di rect oryPat h(0)
MsgBox "Folder =" & path

See also

SetScriptDirectoryPath

7.1.2.13 Application::IsObj
Checks if the specified object is valid
Syntax
ok = app.IsObj(object)
Arguments

Argument Type Description

object Object IDispatch object handler

Result
Result Type Description
ok Boolean Returns Tr ue if the IDispatch object is a valid object reference otherwise
Fal se.
Remarks

The IsObj method checks if a COM Object variable is a valid interface to a IDispatch
interface or not.

If a method of any class is returning a object variable this method can check if the
return value is a valid interface or not.

©2022 by Nanosurf, all rights reserved

68 Script Programmers Manual

The 1 sobj ect () function of Visual Basic is only checking if the variable is of type
'Object’ but not if the stored interface is really valid.

Example
obj App. DocDel et eAl | ' make shure no docunent is open

Di m obj Doc : Set obj Doc = obj App. Get Acti veDoc()
MsgBox obj App. |1 sObj (objDoc) ' display 'false' because no document is avail able
MsgBox | sObj ect (obj Doc) ' display 'true' because variable is of type object

I f obj App. | sObj (obj Doc) Then

MsgBox "Sel ected docunent is " & obj Doc. Nane
El se

MsgBox "No document sel ected"
End If

See also

none.

7.1.2.14 Application::IsStartingUp
Checks if the Nanosurf is busy establishing the microscope connection.
Syntax

flag = application.IsStartingUp

Result
Result Type Description
flag Boolean Returns Tr ue if the application is busy with initialization of the
microscope.
Remarks

The IsStartingUp property is monitoring the startup or initialization process of the
Nanosurf program.

A script should wait until the startup process is finished before it sends the application
further commands.

Example

open application
Di m obj App : Set obj App = Creat eObject (" Nanosurf_C3000. Application")
Do Wil e objApp.IsStartingUp : Loop

©2022 by Nanosurf, all rights reserved

Object Reference

69

do sonet hi ng

See also

none.

7.1.2.15 Application::LoadCalibration
Loads a scan head calibration from file.

Syntax
ok = app.LoadCalibration(filename)
Arguments

Argument Type Description

flename String Path and filename of the calibration file. File extension should be

.hed

Result

Result Type Description

ok Boolean Returns Tr ue if the file could be loaded otherwise Fal se.
Remarks

This method loads a scan head calibration from a file. The file is a special ini-file
formatted file with extension .hed.

Example
I f obj App. LoadCal i bration("10-07-233. hed") == Fal se Then
MsgBox "Could not load file!l"
End I f
See also

Method SaveCalibration

Version info

Software v1.6.0 or later

©2022 by Nanosurf, all rights reserved

70 Script Programmers Manual

7.1.2.16 Application::LoadChartArrangement

Loads a set of chart arrangement from file.
Syntax

ok = app.LoadChartArrangement(filename)
Arguments

Argument Type Description

flename String Path and filename of the chart file. File extension should be .chart

Result

Result Type Description

ok Boolean Returns Tr ue if the file could be loaded otherwise Fal se.
Remarks

This method loads a set of chart arrangement from a file. The file is a special ini-file
formatted file with extension .chart.

Example
I f obj App. LoadChart Arrangenent ("nycharts.chart") == Fal se Then
MsgBox "Could not load file!"
End | f
See also

Method SaveChartArrangement

7.1.2.17 Application::LoadDocument

Load a image document from file.
Syntax

ok = app.LoadDocument(filename)
Arguments

Argument Type Description

flename String Path and filename of the image document file. File extension

©2022 by Nanosurf, all rights reserved

Object Reference 71

should be .nid
Result
Result Type Description
ok Boolean Returns Tr ue if the file could be loaded otherwise Fal se.
Remarks

This method loads a image document from a file. The file is a Nanosurf special file
formate with extension .nid.

Example
I f obj App. LoadDocunent (" mysanpl e. ni d") == Fal se Then
MsgBox " Could not |oad inmge!"
End If
See also

Method SaveDocument

7.1.2.18 Application::LoadParameter

Loads a set of parameters from file.
Syntax

ok = app.LoadParameter(filename)
Arguments

Argument Type Description

flename String Path and filename of the parameter file. File extension should be

.par
Result
Result Type Description
ok Boolean Returns Tr ue if the file could be loaded otherwise Fal se.
Remarks

This method loads a set of parameters from a file. The file is a special ini-file formatted
file with extension .par.

©2022 by Nanosurf, all rights reserved

72 Script Programmers Manual

Example
I f obj App. LoadParaneter ("nysanpl e_settings.par") == Fal se Then
MsgBox "Could not |oad filel"
End | f
See also

Method SaveParameter

7.1.2.19 Application::LoadWorkspace
Loads a workspace from file.

Syntax
ok = app.LoadWorkspacer(filename)
Arguments

Argument Type Description

flename String Path and filename of the workspace file. File extension should be
.gui

Result

Result Type Description
ok Boolean Returns Tr ue if the file could be loaded otherwise Fal se.
Remarks

This method loads a workspace configuration from a file. The file is a special binary-file
formatted file with extension .gui.

Example
I f obj App. LoadWor kspace("nysanpl e. gui") == Fal se Then
MsgBox "Could not |oad filel"
End I f
See also

Method SaveWorkspace

Version info

Software v1.6.0 or later

©2022 by Nanosurf, all rights reserved

Object Reference

7.1.2.20 Application::Log

Log a simple message string.
Syntax

app.Log(strMessage)
Arguments

Argument Type Description

strMessag String Log message
e

Result
None

Remarks

73

This method logs the given string to the "Proxy" log channel with log level "Info". This
function is non blocking and asynchronously logs the message.

See also

Method LogEx, LogUserMarker

7.1.2.21 Application::LogEx

Log a message string on a channel with a log level.

Syntax

app.LogEx(strChannel, nLevel, strMessage)

Arguments

Argument Type Description
strChannel String Log channel
nLewvel Sewerity Log level

strMessag String Log message
e

©2022 by Nanosurf, all rights reserved

74 Script Programmers Manual

Result
None
Remarks

This method logs the given string to the given log channel and log level. This function is
non blocking and asynchronously logs the message.

See also

Method Log, LogUserMarker

7.1.2.22 Application::LogUserMarker

Generate a user marker into the log system.

Syntax
app.LogUserMarker()

Arguments
None

Result
None

Remarks
This method logs a user marker to the "UserMarker" channel with a automatically
incremented number. This function is non blocking and asynchronously logs the
message.

See also
Method Log, LogEx
7.1.2.23 Application::PrintStatusMsg
Prints a message in the status tool bar.
Syntax
application.PrintStatusMsg(message)

Arguments

©2022 by Nanosurf, all rights reserved

Object Reference 75

Argument Type Description
message String Text to print in the status tool bar
Remarks

This method print a text in the first pane of the status tool bar.
Example

obj App. Pri nt Stat usMsg "Hel | o world!"
See also

none

7.1.2.24 Application::SaveCalibration

Save the current scan head calibration to file.
Syntax

ok = app.SaveCalibration(filename)
Arguments

Argument Type Description

flename String Path and filename of the target scan head calibration file. File
extension should be .hed

Result

Result Type Description

ok Boolean Returns Tr ue if the file could be saved otherwise Fal se.
Remarks

This method saves the current scan head calibration to file. The file is a special ini-file
formatted file with extension .hed.

Example
I f obj App. LoadCal i bration("c:\nycalib\3-07-512-hed") == Fal se Then
MsgBox " Could not save filel"
End | f
See also

©2022 by Nanosurf, all rights reserved

76 Script Programmers Manual

Method LoadCalibration

Version info

Software v1.6.0 or later

7.1.2.25 Application::SaveChartArrangement
Saves current set of chart arrangement to file.
Syntax
ok = app.SaveChartArrangement(filename)
Arguments
Argument Type Description
flename String Path and filename of the chart file. File extension should be .chart
Result
Result Type Description
ok Boolean Returns Tr ue if the file could be saved otherwise Fal se.
Remarks

This method saves the current set of chart arrangement to file. The file is a special ini-
file formatted file with extension .chart.

Example
I f obj App. SaveChart Arrangenent ("nycharts.chart") == Fal se Then
MsgBox "Could not save filel"
End I f
See also

Method LoadChartArrangement

©2022 by Nanosurf, all rights reserved

Object Reference 77

7.1.2.26 Application::SaveDocument
Save current image document to file.
Syntax

ok = app.saveDocument(filename)

Arguments

Argument Type Description

flename String Path and filename of the image document file. File extension

should be .nid

Result

Result Type Description

ok Boolean Returns Tr ue if the file could be saved otherwise Fal se.
Remarks

This method saves the current image document to file. The file is a Nanosurf special
file formate with extension .nid.

Example

measure i nage
obj Scan. Start FraneUp
Do Wil e obj Scan.|sScanning : Loop

create image and save
obj Scan. St art Capture

I f obj App. SaveDocunent ("mysanpl e. nid") == Fal se Then
MsgBox " Could not save inmage!"
End I f
See also

Method LoadDocument

7.1.2.27 Application::SaveParameter
Save the current set of parameters to file.
Syntax

ok = app.SaveParameter(filename)

©2022 by Nanosurf, all rights reserved

78 Script Programmers Manual

Arguments

Argument Type Description

flename String Path and filename of the target parameter file. File extension should
be .par

Result

Result Type Description

ok Boolean Returns Tr ue if the file could be saved otherwise Fal se.
Remarks

This method saves the current set of parameters to file. The file is a special ini-file
formatted file with extension .par.

Example
I f obj App. SavePar aneter (" nysanpl e_settings.par") == Fal se Then
MsgBox " Could not save file!"
End I f
See also

Method LoadParameter

7.1.2.28 Application::SaveWorkspace
SetGalleryHistoryDirectoryPathSetGalleryHistoryDirectoryPath

Save the current workspace configuration to file.
Syntax

ok = app.SaveWorkspace(filename)

Arguments
Argument Type Description
flename String Path and filename of the target workspace file. File extension
should be .gui
Result
Result Type Description

©2022 by Nanosurf, all rights reserved

Object Reference 79

ok Boolean Returns Tr ue if the file could be saved otherwise Fal se.

Remarks

This method saves the current workspace configuration to file. The file is a special
binary-file formatted file with extension .gui.

Example
I f obj App. SaveWbr kspacer ("mysanpl e. gui") == Fal se Then
MsgBox "Could not save file!"
End If
See also

Method LoadW orkspace

Version info

Software v1.6.0 or later

7.1.2.29 Application::SetGalleryHistoryDirectoryPath

Defines the file path where captured data shall be stored.
Syntax
app.SetGalleryHistoryDirectoryPath(Path)

Arguments

Argument(Type Description

Path String file path like "C:\some\path\to\a\folder"

Result

Result Type Description

None

Remarks
None

Example

©2022 by Nanosurf, all rights reserved

80 Script Programmers Manual

obj App. Set Gal | eryHi storyDirectoryPat h("C:\ User s\ Public\Documents")
See also

GetGalleryHistoryDirectoryPath

7.1.2.30 Application::SetGalleryHistoryFilenamelndex

Defines the index for the next captured files.
Syntax
app.SetGalleryHistoryFilenamelndex(index)

Arguments

Argument|Type Description

Index Number [mustbe>=0

Result

Result Type Description

None

Remarks

The SetGalleryHistoryFilenamelndex() method sets the start offset, meaning setting
the index to O(Zero), the next created image will have the index 1(one).

Example
obj App. Set Gal | eryHi storyFi | enanel ndex(42)
See also

GetGalleryHistoryFilenamelndex

7.1.2.31 Application::SetGalleryHistoryFilenameMask

Defines the filename mask for new captured files.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 81

app.SetGalleryHistoryFilenameMask(Mask)

Arguments
Argument(Type Description
Mask String Filename mask. cannot contain white spaces or slashes. Possible
wild cards
[INDEX] = 00001.nid
[DATE]
[TIME]
the [INDEX] will always be appended no matter what!
Result
Result Type Description
None
Remarks
Example

obj App. Set Gal | eryHi storyFi | enameMask(" MyFancyExperi nent _[| NDEX] ")
See also

GetGalleryHistoryFilenameMask

7.1.2.32 Application::SetScriptDirectoryPath
Defines the file path where scripts are stored.
Syntax

app.SetScriptDirectoryPath(Index, Path)

Arguments
Argument|Type Description
Index Number |0 - Index for measurement scripts
1 - Index for analyzing scripts
Path String file path like "C:\some\path\to\a\folder"
Result

©2022 by Nanosurf, all rights reserved

82 Script Programmers Manual

Result Type Description

None

Remarks
None

Example

obj App. Set Scri pt DirectoryPat h(0, "C:\Users\Public\Docunents")
See also

GetScriptDirectoryPath

7.1.2.33 Application::Sleep

Delay the script execution.
Syntax

application.Sleep(time)
Arguments

Argument Type Description

time double Delay time in [s].

Remarks
This method delay the execution of the script by the amount of seconds given as
argument. The delay precision depends on the workload of the PC and should not be
used as a precision timer. Minimal delay is 50ms.

Example
do sonet hi ng
obj App. Sl eep(30.0) '[s]
do somet hing el se

See also

none

©2022 by Nanosurf, all rights reserved

Object Reference 83

7.2

Approach

The Approach class handles the microscope's approach system.

Controlling the coarse distance between the sensor tip and the sample surface is the
main goal of this class. This process can be divided into two separate phases:

* The sensor can be moved fast toward or away from the surface with the methods
StartAdvance and StartRetract.

e The critical action of finally closing the distance between sample and tip until the z
feedback controller can sense the surface is done by StartApproach. Afirst release of
the contact is done by StartWithdraw.

All movements are asynchronously handled by the microscope control electronics. To
stop any movement call the method Stop. To know if a movement is in process call
IsMoving. To know if a movement was successful or not call method Status.

A object pointer to this class is provided by the Application.Approach object property.

Table of properties for Approach class:

Property name

Purpose

ApproachSpeed

Define the speed used by StartApproach()

WithdrawSpeed

Define the speed used by StartWithdraw()

ApproachMaxSteps

Defines the maximal retries during an automatic approach

AutoStartimaging

This flags defines if the imaging process is started after approach

AutoReloadSettings

This flag defines if prior a approach the parameters are load from file

ShowApproachDoneDialog

Defines if the success dialog is shown or not

ApproachPos

Defines the tip position during approach or readjust the position

IsMoving Retrieve the information whether a movement is in process or not
AFMApproachMode Define the approach mode

AFMStepByStepSpeed Define the speed of movement in Step-By-Step approach mode
AFMStepByStepRange Define the mowe range in Step-By-Step approach mode

Table of methods for Approach class:

Method name

Purpose

ShowWindow

Controls the visibility of the imaging window

©2022 by Nanosurf, all rights reserved

84 Script Programmers Manual

StartApproach Starts the automatic final approach toward sample

StartWithdraw Retract the sensor from surface by a controlled small
amount

StartAdvance Start a fast movement toward sample

StartRetract Start a fast movement away from sample

StartHome Start a fast movement until the home position is reached

Stop Stop any movement

Status Retrieve the current status of a movement

ForceApproachStatus Sets the approach status to a given state value

ZMotorStep Performs a Z motor step

ZMotorStepStop Stops Z motors step

ForceZMotorPosUpdate Requests an update of the Z motor positions

ZMotorSetPosZero Sets current position of given Z Motor to 0.0

LevelScanhead Lewels the scanhead

ZMotorReference References Z Motors

ZMotorReferenceAndMoveBack References Z Motors and goes back to the previous position

IsZMotorReferenced Checks whether Z Motors are referenced

GetZMotorPosition Returns position of given Z Motor

7.2.1 Properties

7.2.1.1 Approach::ApproachMaxSteps

Returns or set the maximal length of an automatic tip approach.
Syntax

approach.ApproachMaxSteps [= steps]
Setting

Argument Type Description

steps long Defines the number of maximal steps allowed until an abort of the
automatic tip approach.

Remarks

The automatic tip approach aborts its search for the surface after a defined number of

©2022 by Nanosurf, all rights reserved

Object Reference 85

unsuccessful retries.

In the current AFM scan head design a linear motor is used to move the scan stage.
Therefore the number of steps is a time slice during the motor is rotating than an actual
step of the motor.

Example

obj Appr. Appr oachMaxSt eps = 20000
obj Appr. St art Approach

See also

Method StartApproach, Property ApproachSpeed

7.2.1.4 Approach::ApproachPos

Returns or set the tip position at approach.
Syntax

approach.ApproachPos [= pos]
Setting

Argument Type Description

pos double Defines the tip position during AFM approach or reposition the tip
position

Remarks
The approach position of the tip is controlled by this property. It has two usages:

1. Defines the tip position during the approach process. This is usually Oum which
corresponds to mid range of the full z-scan range. Other values are used to
approach an measure small high features or narrow deep holes.

2. The stage can by readjusted after approach to re-center the mean tip position. This
is usually used if the sample has large drifts. If the ApproachPos property is set after
an approach and the z-controller has closed contact the stage is moved my the
approach motor until the z-controller's output reaches the new position defined by
the property. The movement speed is controlled by ApproachSpeed property. The
process can by stopped by the Stop Method.

These two concept are excluding and the user has to select a practical compromise. If
the surface is rough and the tip sharpness is not so critical a faster approach speed
can be chosen. If the surface has very small details and a sharp tip should be

©2022 by Nanosurf, all rights reserved

86 Script Programmers Manual

preserved a slower approach speed should be set. Practical values are in the range of
5% to 30%.

Example

obj Appr. ApproachPos = -1e-6 '[um
obj Appr. St art Approach

See also

ApproachSpeed Property, Stop Method

Version info

Available since Software v1.5.0

7.2.1.5 Approach::ApproachSpeed

Returns or set the speed of automatic tip approach or withdraw.
Syntax

approach.ApproachSpeed [= speed]
Setting

Argument Type Description

speed double Defines the speed of automatic approach and withdraw in percent
of full speed motor movement

Remarks
The speed of the automatic tip approach should be selected with two ideas in mind:

¢ To reach the surface as quick as possible a high moving speed would be interesting
¢ To prevent the tip from damage at closing contact with the surface a smooth and
careful approach is desired

These two concept are excluding and the user has to select a practical compromise. If
the surface is rough and the tip sharpness is not so critical a faster approach speed
can be chosen. If the surface has very small details and a sharp tip should be
preserved a slower approach speed should be set. Practical values are in the range of
5% to 30%.

Example

obj Appr. ApproachSpeed = 10.0 '[Y
obj Appr. St art Approach

©2022 by Nanosurf, all rights reserved

Object Reference 87

See also

Method StartApproach, StartWithdraw

7.2.1.6 Approach::AutoReloadSettings

Returns or set the flag to define if microscope parameter settings should be reload
before each approach.

Syntax

approach.AutoReloadSettings [= flag]

Setting
Argument Type Description
flag Boolean Set to True if the settings in the current parameter file should be
reloaded before each approach.
Remarks

The settings of the microscopes parameter can be automatically reloaded prior an
approach is executed. This is useful where each multiple images should be measured
exactly with the same settings. A repetitive equal sample measurement in a quality
control environment is an example where this flag could be used to ensure equal
measurement conditions.

The settings are loaded form the currently active parameter file shown in the status bar.

See also

Method StartApproach

7.2.1.7 Approach::AutoStartimaging

Returns or set the flag to define if imaging is started automatically after a successful
approach.

Syntax
approach.AutoStartimaging [= flag]

Setting

©2022 by Nanosurf, all rights reserved

88 Script Programmers Manual

Argument Type Description

flag Boolean Set to True if imaging should be started after an approach is
successful done. Fal se if no action should be executed.

Remarks

To automatically start the imaging process after the approach this property can be set.
This is useful where the user should take over the instrument after the approach is
done. If no user interaction is desired the flag could be set to false in order to control the
microscope from the script only.

The start of the imaging is only triggered if a successful "approach done" could be
executed. See method Status.

See also

Method StartApproach, Property Status

7.2.1.8 Approach::ShowApproachDoneDialog

Returns or set the flag to define if the "Approach Done" Dialog should be displayed after
a successful approach.

Syntax
approach.ShowApproachDoneDialog [= flag]
Setting

Argument Type Description

flag Boolean Setto True if the Dialog should be displayed after an approach is
successful done. ral se if no dialog should be displayed.

Remarks

This property defines if a dialog should be displayed after a successful approach has
been executed. If approach is executed in a script environment this dialog is in many
cases unwanted an can be switched of by this property.

A script displayling the dialog should enable it at the end of the script again.

See also

Method StartApproach, Property Status

©2022 by Nanosurf, all rights reserved

Object Reference 89

Version info

Software v1.4.0 or later

7.2.1.9 Approach::Withdraw Steps
Returns or set the length of an automatic tip withdraw.
Syntax

approach.WithdrawSteps [= steps]

Setting
Argument Type Description
steps long Defines the number of steps counted during an automatic tip
withdraw.
Remarks

The automatic tip withdraw is used to perform a small tip release from the surface.
Normally this is done to move the surface underneath the tip and reapproach afterward.

In the current AFM scan head design a linear motor is used to move the scan stage.
Therefore the number of steps is a time slice during the motor is rotating than an actual
step of the motor.

Example

obj Appr. Wt hdr awSt eps = 1000
obj Appr. Start W t hdr aw

See also

Method StartWithdraw, Property ApproachSpeed

7.2.2 Methods

7.2.2.1 Approach::IsMoving

Checks if any z approach motor movement is in process.
Syntax
flag = approach.IsMoving

Result

©2022 by Nanosurf, all rights reserved

90 Script Programmers Manual

Result Type Description

flag Boolean Returns Tr ue if the z approach motor is moweing.

Remarks

The IsMoving property is monitoring the movement of the z approach motor. A script
should wait after any call of a Start... method until the movement is finished.

Example

park scan stage
obj Appr. Start Retract
Do Whil e obj Appr.I1sMving : Loop

See also

Method StartApproach, StartWithdraw, StartAdvance, StartRetract

7.2.2.2 Approach::ShowWindow

Defines the display style of the Positioning window.
Syntax
objAppr.ShowWindow(style)
Arguments
Argument Type Description
style short Visibility style number
Result
None.
Remarks
The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example

obj Appr. ShowW ndow(0) ' hide the w ndow

©2022 by Nanosurf, all rights reserved

Object Reference 91

See also

None.
Version info

Software v1.4.0 or later

7.2.2.3 Approach::StartAdvance
Starts advancing the tip to the surface.

Syntax
approach.StartAdvance

Remarks
This method is moving the tip toward the surface. This is a fast movement and is used
to shorten the automatic approach. After a preparation of a new sample usually the
sensor is far away from the surface and a slow automatic approach would be
timeconsuming. During the movement a read of IsMoving is True. To stop the
movement call Stop method.

Attention
Because no exact control of the movement is provided this method should be used
with great care! Any tip sample contact could damage the tip and measurement with
such a tip will be degraded or completely impossible. Use StartApproach instead.

See also

Method IsMoving, Stop, StartApproach

7.2.2.4 Approach::StartApproach

Starts the automatic tip approach to the surface.
Syntax
approach.StartApproach
Remarks
This method is starting the automatically approach process. Approaching the surface is

a first step process before the microscope is ready to perform other surface analysis
method as imaging or spectroscopy. During the approach process the tip is moved to

©2022 by Nanosurf, all rights reserved

92 Script Programmers Manual

the sample surface and the sensor's signal is monitored. The approach is stopped
when the sensor signal has reached the setpoint value defined by the z feedback
controller.

Operating Mode settings and Z Feedback controller settings should be set to
reasonable values prior an approach. Depending on the operating mode special sensor
calibration sequences could be executed prior the actual approach movement starts.

The script can wait for the end of the approach by reading the IsMoving method. After
IsMoving returns ral se the reason why the approach stopped should be read with the
method Status. If an error condition was the reason an appropriate action should be
taken by the script (e.g. Display a message box and withdrawing from the surface). To
abort the approach call method Stop.

Example

prepare approach
obj Appr. ApproachSpeed = 10.0
obj Appr. Aut oSt art | magi ng = Fal se

approach
obj Appr. St art Approach
Do Wil e obj Appr.IsMving : Loop

i f successful do sonething
I f obj Appr.Status = 3 Then

approach done -> do sonmething (start imaging or)
El se ' approach error
MsgBox " Approach error = " & obj Appr. Status
End If
finish

obj Appr. Start W t hdr aw
Do Wil e obj Appr.IsMving : Loop

See also

Property ApproachSpeed, ApproachMaxSteps, AutoStartimaging,
Method IsMoving, Status, Stop
Class OperatingMode, ZController

7.2.2.5 Approach::StartRetract
Starts retracting the tip from surface.
Syntax

approach.StartRetract

©2022 by Nanosurf, all rights reserved

Object Reference 93

Remarks

This method is moving the tip away from the surface. This is a fast movement and is
used to park the sensor in a far away position from the surface in order to exchange

sample or prior shut down of the microscope power. During the movement a read of
IsMoving is True. To stop the movement call Stop method. Prior the movement any
scanning is stopped and the tip is retracted from the surface.

Because no exact control of the movement is provided this method should be used
only in combination with a user interface or a delay timer to define the duration and the
length of the movement.

A special case is parking the AFM scan stage in the most retracted upper position. You
can call StartRetract and wait until IsMoving is Fal se. Then the scan stage is moved
into the upper end switch.

Example

finish
obj Appr. Start Retract
Sl eep(500)
obj Appr. St op

See also

Method IsMoving, Stop

7.2.2.7 Approach::StartWithdraw

Starts withdrawing the tip from the surface.
Syntax

approach.StartWithdraw
Remarks

This method is moving the tip away from the surface by a controlled amount. The
withdraw length is set by WithdrawSteps property.
Prior the movement any scanning is stopped and the tip is retracted from the surface.

The script can wait for the end of the withdraw by reading the IsMoving method. To
abort the withdraw call method Stop.

The speed of the withdraw is the same as the approach speed an is set by property
ApproachSpeed.

Example

©2022 by Nanosurf, all rights reserved

94 Script Programmers Manual

finish
obj Appr.
Do Wil e obj Appr.IshMving :

See also

Start Wt hdraw
Loop

Property ApproachSpeed
Method IsMoving, Stop

7.2.2.9 Approach::Status

Returns the current status of the z approach motor and the approach process.

Syntax

status = approach.Status

Result

Result

status

Remarks

Type Description

long
below.

A number naming the state of the z approach stage. See table

Read this Method to get more information about the state of z approach motor stage.
You can call this method during a movement or after the end. It gives you information if
a movement was successful or not and why.

Table of approach state number and description:

State
No.

Name

Description

0

ApprStat_Standby

No movement

ApprStat_Initializing

Preparing of automatic approach in process

ApprStat_Approaching

Automatic approach in process

ApprStat_ApproachDone

Automatic approach successful finished

ApprStat_ApproachAborted

Approach automatically aborted

1
2
3
4
5

ApprStat_MoveToParkPositio
n

Moving to park position in process

ApprStat_ParkPositionReach
ed

Park position reached

ApprStat_ MoveAway

Retracting tip from sample in process

©2022 by Nanosurf, all rights reserved

Object Reference

95

8 ApprStat_MoveToward Advancing tip toward tip in process

9 ApprStat_SensorFailed AFM sensor error

10 ApprStat_LimitFailed AFM approach stage failure

11 ApprStat_CalibrationFailed (Initialisation or calibration process failed
12 ApprStat_UserAbort Movement was stopped by Stop method
13 ApprStat_MaxOut End of movement reached

14 ApprStat_InitDone Sensor initialisation finished

15 ApprStat_AdjustingTipPos |readjusting tip position while in contact

Example

approach
obj Appr. St art Approach
Do Wil e obj Appr.IshMving : Loop

check state
I f obj Appr.Status <> 3 Then

MsgBox " Approach error = " & obj Appr. Status
End I f

See also

Method StartApproach, StartWithdraw, StartAdvance, StartRetract

7.2.2.10 Approach::Stop

Stops any movement of the z approach motor.
Syntax
approach.Stop
Remarks
This method stops any on going movement z approach motor movement

Example

approach with timeout

obj Appr. St art Approach

sl eep(10000)

I f obj Appr.IsMving Then
obj Appr. St op
MsgBox "No surface found"

©2022 by Nanosurf, all rights reserved

96

Script Programmers Manual

7.3

End |f

See also

Method IsMoving, StartApproach, StartWithdraw, StartAdvance, StartRetract

BatchManager

The Stage class handles the batch manager subsystem.

A object pointer to this class is provided by the Application.BatchManager object property.

Table of properties for the BatchManager class:

Property name

Purpose

CurrentPointIndex

Current point index

HasConfigurationFilename

Says if the configuration as a file name associated with it

Isidle Says if the batch manager is idle

IsPaused Says if the batch manager is paused
IsStopFlag Says if the batch manager has the stop flag set
IsUnconfigured Says if the batch manager is unconfigured
IsWorking Says if the batch manager is working

Table of methods for the BatchManager class:

Method name

Purpose

AppendNewPointRecord

Appends a new point record to the list

AppendNewPointRecordFromCurrentPosi|Appends a new point record with the current coordinates

tion

CreateNewConfiguration

Creates a new batch manager configuration

GetChangeSamplePosition

Returns the change sample position

GetConfigurationDescription

Returns the configuration description text

GetPointRecordArgument

Returns a point record argument

GetPointRecordPoint

Returns a point record position

GetReferencePosition

Returns the reference position

GetScript

Returns the script text

LoadConfigurationFile

Loads a configuration file

MowveToChangeSamplePosition

Moves the stage to the change sample position

©2022 by Nanosurf, all rights reserved

Object Reference 97

Pause Pauses the batch manager processor
RemowePointRecord Remowes a specific point record from the list
SawveConfigurationFile Sawes the configuration

SaveConfigurationFileEx Sawes the configuration to given configuration file
SetChangeSamplePosition Sets the change sample position
SetConfigurationDescription Sets the configuration description text
SetPointRecordArgument Sets a point record argument
SetPointRecordPoint Sets a point record position
SetReferencePosition Sets the reference position

SetScript Sets the script text

Start Stars the batch manager processor from given list item
Stop Stops the batch manager processor

7.3.1 Properties

7.3.1.1 BatchManager::CurrentPointindex

Returns the current point index of the batch manager process. This property is read
only.

Syntax

objBatchManager.CurrentPointindex [= index] [read only]

Setting

Argument|Type Description

index Boolean |Current point index of batch manager process
Remarks

This returns the current point index of the batch manager process.The index starts with
0 and ends at "point count" - 1.

See also

Version info

©2022 by Nanosurf, all rights reserved

98 Script Programmers Manual

Software v3.5.0.0 or later

7.3.1.2 BatchManager::HasConfigurationFilename

Returns a flag which says if the batch manager has a configuration file name set or not.
This property is read only.

Syntax

objBatchManager.HasConfigurationFilename [= flag] [read only]

Setting

Argument|Type Description

flag Boolean [True if a configuration file name is set
Remarks

This flag says if the batch manager has a configuration file name set or not. This is
necessary to save the configuration and is implicitly set when LoadConfigurationFile

was used.

See also

Method CreateNewConfiguration, LoadConfigurationFile, SaveConfigurationFile,
SaveConfigurationFileEx

Version info

Software v3.5.0.0 or later

7.3.1.3 BatchManager::Isldle

Returns a flag which says if the batch manager is idle or not. This property is read only.

Syntax
objBatchManager.Isldle [= flag] [read only]

Setting

Argument|Type Description

©2022 by Nanosurf, all rights reserved

Object Reference 99

flag Boolean |[1r ue if idle

Remarks

This flag says if the batch manager is idle.

See also

Property IsWorking, IsPaused, IsStopFlag

Version info

Software v3.5.0.0 or later

7.3.1.4 BatchManager::IsPaused

Returns a flag which says if the batch manager is paused or not. This property is read
only.

Syntax

objBatchManager.IsPaused [= flag] [read only]

Setting

Argument|Type Description

flag Boolean |[true if is paused
Remarks

This flag says if the batch manager is paused.

See also

Property Isldle, IsWorking, IsStopFlag

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

100

Script Programmers Manual

7.3.1.5

7.3.1.6

BatchManager::IsStopFlag

Returns a flag which says if the batch manager stop flag is set or not. This property is
read only.

Syntax
objBatchManager.IsStopFlag [= flag] [read only]

Setting

Argument|Type Description

flag Boolean [True if StopFlag is set

Remarks

This flag says if the batch manager has the stop flag set. Because a batch manager
operation may need a lot of time to
shutdown, a stop flag signals that a stop is in progress.

See also

Property Isldle, IsWorking, IsPaused, Method Stop

Version info

Software v3.5.0.0 or later

BatchManager::IsUnconfigured

Returns a flag which says if the batch manager is configured or not. This property is
read only.

Syntax

objBatchManager.IsUnconfigured [= flag] [read only]

Setting
Argument|Type Description
flag Boolean |[true if not configured

©2022 by Nanosurf, all rights reserved

Object Reference 101

Remarks

This flag says if the batch manager is configured or not. Most functions can't be used
before the batch manager is configured.

See also

Method CreateNewConfiguration, LoadConfigurationFile

Version info
Software v3.5.0.0 or later

7.3.1.7 BatchManager::IsWorking

Returns a flag which says if the batch manager is working or not. This property is read
only.

Syntax

objBatchManager.IsWorking [= flag] [read only]

Setting

Argument(Type Description

flag Boolean |[1rue if is working
Remarks

This flag says if the batch manager is working.

See also

Property Isldle, IsPaused, IsStopFlag

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

102 Script Programmers Manual

7.3.2 Methods
7.3.2.1 BatchManager::AppendNewPointRecord
This method appends a new point record and returns the point list index of it.
Syntax
retval = objBatchManager.AppendNewPointRecord()
Argument
None

Result

Result Type Description

retval int32 Point list item index

Remarks

The AppendNewPointRecord method appends a new point record and returns the
point list item index of it

See also

Method RemovePointRecord, AppendNewPointRecordFromCurrentPosition

Version info

Software v3.5.0.0 or later

7.3.2.2 BatchManager::AppendNewPointRecordFromCurrentPosition

This method appends a new point record with the current stage coordinates and returns
the point list index of it.

Syntax

retval = objBatchManager.AppendNewPointRecordFromCurrentPosition()
Argument

None

Result

©2022 by Nanosurf, all rights reserved

Object Reference 103

Result Type Description
retval int32 Point list item index
Remarks

The AppendNewPointRecord method appends a new point record with the current
stage coordinates and returns the point list item index of it

See also

Method RemovePointRecord, AppendNewPointRecord

Version info

Software v3.5.0.28 or later

7.3.2.3 BatchManager::CreateNew Configuration

This method creates a new batch manager configuration.
Syntax

objBatchManager.CreateNewConfiguration()
Argument

None
Result

None
Remarks

The CreateNewConfiguration method creates a new batch manager configuration
without file name. If an open configuration has unsaved changes, those are lost. The
new configuration is used by the batch manager process immediately and is idle.

See also

Method LoadConfigurationFile, SaveConfigurationFile, SaveConfigurationFileEx,
Property HasConfigurationFilename

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

104 Script Programmers Manual

7.3.2.4 BatchManager::GetChangeSamplePosition

This method returns the change sample position for given axis.

Syntax

retval = objBatchManager.GetChange SamplePosition(nVirtualAxisid)

Argument

Paramete [Type Description

r

nVirtual Axi|int32 Virtual axis id

sld
Result

Result Type Description

retval double Change sample position
Remarks

The GetChangeSamplePosition method returns the change sample position of an
axis. The change sample position is a special position that can be moved to, to change
the sample.

See also

Method SetChangeSamplePosition, MoveToChangeSamplePosition

Version info

Software v3.5.0.0 or later

7.3.2.5 BatchManager::GetConfigurationDescription

This method returns the configuration file description.

Syntax

retval = objBatchManager.GetConfigurationDescription()

Argument
None

Result

©2022 by Nanosurf, all rights reserved

Object Reference 105

Result Type Description
retval String Configuration file description
Remarks

The GetConfigurationDescription method returns the configuration file description.
This is an unprocessed string which can help identify a configuration or write
something about it.

See also

Method SetConfigurationDescription

Version info

Software v3.5.0.0 or later

7.3.2.6 BatchManager::GetPointRecordArgument
This method returns the point argument for given point list item and argument name.

Syntax

retval = objBatchManager.GetPointRecrodArgument(nPointListindex, nVirtualAxisid)

Argument

Parameter ([Type |Description

nPointListindelint32 |Point list index
X

strArgumentN [String [Argument name

ame
Result

Result Type Description

retval String Point argument value
Remarks

The GetPointRecrodArgument method returns the point argument value of an point
list item and argument name.

See also

©2022 by Nanosurf, all rights reserved

106 Script Programmers Manual

Method SetPointRecordArgument

Version info

Software v3.5.0.0 or later

7.3.2.7 BatchManager::GetPointRecordPoint

This method returns the point position for given axis and point list item.
Syntax
retval = objBatchManager.GetPointRecrodPoint(nPointListindex, nVirtualAxislid)

Argument

Parameter [Type Description

nPointListIn [int32 Point list index
dex

nVirtualAxis|int32 Virtual axis id

d
Result
Result Type Description
retval double Point position
Remarks

The GetPointRecrodPoint method returns the point position of an axis and point list
item.

See also

Method SetPointRecordPoint

Version info

Software v3.5.0.0 or later

7.3.2.8 BatchManager::GetReferencePosition

This method returns the reference position for given axis.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference

107

retval = objBatchManager.GetReferencePosition(nVirtualAxisId)

Argument

Paramete [Type Description

r

nVirtualAxi(int32 Virtual axis id

sld
Result

Result Type Description

retval double Reference position
Remarks

The GetReferencePosition method returns the reference position of an axis. The

reference position is added to any point position in the batch manager process.

See also

Method SetReferencePosition

Version info

Software v3.5.0.0 or later

7.3.2.9 BatchManager::GetScript

This method returns the batch manager script.
Syntax

retval = objBatchManager.GetScript()
Argument

None

Result

Result Type Description

retval String Batch manager script

Remarks

©2022 by Nanosurf, all rights reserved

108 Script Programmers Manual

The GetScript method returns the batch manager script. This is the operational heart
of the batch manager. While the batch manager is changing the position from point to
point, the script is run to perform tasks on the points.

See also

Method SetScript

Version info

Software v3.5.0.0 or later

7.3.2.10 BatchManager::LoadConfigurationFile

This method loads a batch manager configuration from file.
Syntax
objBatchManager.LoadConfigurationFile(strFilename)

Argument

Paramete [Type Description
r

striilenam |String Batch manager configuration file name
e

Result
None
Remarks

The LoadConfigurationFile method loads a batch manager configuration from file.
The configuration is used by the batch manager process immediately and is idle.

See also

Method CreateNewConfiguration, SaveConfigurationFile, SaveConfigurationFileEX,
Property HasConfigurationFilename

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

Object Reference 109

7.3.2.11 BatchManager::MoveToChangeSamplePosition

This method moves the stage to the change sample position.
Syntax
objBatchManager.MoveToChangeSamplePosition()
Argument
None
Result
None
Remarks

The MoveToChangeSamplePosition method moves the stage to the change sample
position.

See also

Method SetChangeSamplePosition, GetChangeSamplePosition

Version info

Software v3.5.0.0 or later

7.3.2.12 BatchManager::Pause

This method pauses the batch manager process.
Syntax
objBatchManager.Pause()
Argument
None
Result
None
Remarks

The Pause method pauses the batch manager process. The pause will occur just
before the next point would be processed.

©2022 by Nanosurf, all rights reserved

110

Script Programmers Manual

See also

Method Start, Stop

Version info

Software v3.5.0.0 or later

7.3.2.13 BatchManager::RemovePointRecord

This method removes the point record with given point list index.
Syntax
objBatchManager.RemovePointRecord(nPointListindex)

Argument

Parameter |Type [Description

nPointListinde|int32 |Point list index
X

Result
None
Remarks

The RemovePointRecord method sets the point argument value of given point list
item and argument name.

See also

Method AppendNewPointRecord

Version info

Software v3.5.0.0 or later

7.3.2.14 BatchManager::SaveConfigurationFile

This method saves a batch manager configuration to file.
Syntax

objBatchManager.SaveConfigurationFile()

©2022 by Nanosurf, all rights reserved

Object Reference 111

Argument
None

Result
None

Remarks

The SaveConfigurationFile method saves the batch manager configuration to file.
HasConfigurationFilename must return Tr ue for this method to work. Else
SaveConfigurationFileEx must be used.

See also

Method CreateNewConfiguration, LoadConfigurationFile, SaveConfigurationFileEX,
Property HasConfigurationFilename

Version info

Software v3.5.0.0 or later

7.3.2.15 BatchManager::SaveConfigurationFileEx

This method saves a batch manager configuration to file.
Syntax
objBatchManager.SaveConfigurationFile Ex(strFilename)

Argument

Paramete [Type Description
r

striilenam |String Batch manager configuration file name
e

Result
None
Remarks
The SaveConfigurationFileEx method saves the batch manager configuration to file.

The configuration file name is changed permanently to the saved destination which
allows SaveConfigurationFile to be used next time.

©2022 by Nanosurf, all rights reserved

112 Script Programmers Manual

See also

Method CreateNewConfiguration, LoadConfigurationFile, SaveConfigurationFile,
Property HasConfigurationFilename

Version info

Software v3.5.0.0 or later

7.3.2.16 BatchManager::SetChangeSamplePosition
This method sets the change sample position for given axis.
Syntax
objBatchManager.SetChange SamplePosition(nVirtualAxisld, val)

Argument

Paramete [Type Description
r

nVirtualAxilint32 Virtual axis id
sid

\val double AXis value

Result
None
Remarks

The SetChangeSamplePosition method sets the change sample position of given
axis. The change sample position is a special position that can be moved to, to change
the sample.

See also

Method GetChangeSamplePosition, MoveToChangeSamplePosition

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

Object Reference 113

7.3.2.17 BatchManager::SetConfigurationDescription

This method sets the configuration file description.

Syntax

objBatchManager.SetConfigurationDescription(strDescription)

Argument

r

Paramete [Type

Description

on

strDescript|String

Batch manager configuration file description

Result
None

Remarks

The SetConfigurationDescription method sets the configuration file description. This
is an unprocessed string which can help identify a configuration or write something

about it.

See also

Method GetConfigurationDescription

Version info

Software v3.5.0.0 or later

7.3.2.18 BatchManager::SetPointRecordArgument

This method sets the change sample position for given axis and point list item.

Syntax
objBatchManager.SetPointRecordArgument(nPointListindex, strArgumentName,
val)

Argument
Parameter |Type [Description

nPointListinde
X

int32

Point list index

©2022 by Nanosurf, all rights reserved

114 Script Programmers Manual

strArgumentN [String JArgument name
ame

val String [Argument value

Result
None
Remarks

The SetPointRecordArgument method sets the point argument value of given point
list item and argument name.

See also

Method GetPointRecordArgument

Version info

Software v3.5.0.0 or later

7.3.2.19 BatchManager::SetPointRecordPoint
This method sets the change sample position for given axis and point list item.
Syntax
objBatchManager.SetPointRecordPoint(nPointListindex, nVirtualAxisld, val)

Argument

Parameter [Type Description

nPointListIn |int32 Point list index
dex

nVirtualAxis|int32 Virtual axis id
Id

val double [Axis value

Result
None
Remarks

The SetPointRecordPoint method sets the point position of given axis and point list
item.

©2022 by Nanosurf, all rights reserved

Object Reference 115

See also

Method GetPointRecordPoint

Version info

Software v3.5.0.0 or later

7.3.2.20 BatchManager::SetReferencePaosition
This method sets the reference position for given axis.
Syntax
objBatchManager.SetReferencePosition(nVirtualAxisld, val)

Argument

Paramete [Type Description
r

nVirtualAxilint32 Virtual axis id
sid

\val double AXis value

Result
None
Remarks

The SetReferencePosition method sets the reference position of given axis. The
reference position is added to any point position in the batch manager process.

See also

Method GetReferencePosition

Version info

Software v3.5.0.0 or later

7.3.2.21 BatchManager::SetScript

This method sets the batch manager script description.

Syntax

©2022 by Nanosurf, all rights reserved

116 Script Programmers Manual

objBatchManager.SetScript(strScript)

Argument

Paramete [Type Description
r

strScript |String Batch manager script

Result
None

Remarks
The SetScript method sets the batch manager script. This is the operational heart of
the batch manager. While the batch manager is changing the position from point to

point, the script is run to perform tasks on the points.

See also

Method GetScript

Version info

Software v3.5.0.0 or later

7.3.2.22 BatchManager::Start

This method starts the batch manager process at given location.
Syntax
objBatchManager.Start(nPointListindex)

Argument

Parameter |[Type [Description

nPointListindelint32 [Point list index
X

Result

None

Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 117

The Start method starts the batch manager process at given location. The batch
manager must be idle. To start from the beginning, the location 0 must be set.

See also

Method Stop, Pause

Version info

Software v3.5.0.0 or later

7.3.2.23 BatchManager::Stop

This method stops the batch manager process.
Syntax
objBatchManager.Stop()
Argument
None
Result
None
Remarks

The Stop method stops the batch manager process. If a script method is running, the
stop will occur after this method is finished.

See also

Method Start, Pause

Version info

Software v3.5.0.0 or later

7.4 Chart

The Chart class represents a graphical display of data in a documents window. The data,
a chart is displaying, is stored in a associated data container in the document. The
properties Group and Signal are specifying this data container.

A chart can display the contents in many styles. They are defined by a set of Properties.
These properties are similar to the buttons found in the Application's Chart Toolbar.

©2022 by Nanosurf, all rights reserved

118 Script Programmers Manual

Multiple charts are stored in a list by the document and are referenced by a position.

Table of properties of class Chart:

Property name Purpose

Pos Display position of the chart in the document window
Grou Group index of the displayed data container

Signal Signal number of the displayed data container

Type Type of chart

Filter Mathematical line by line filter applied to the display data
Active Activation flag of the chart

AXisShow Show or hides the axis

RangeAutoSet

Enable the automatically data range algorithm

RangeCenter

Set the centre value of the display data range

RangeSpan Set the span value of the display data range
ViewSize Defines the size of the chart in the window

Table of methods of class Chart:

Method name

Purpose

GetDocument

Retrieves the IDispatch object to the charts parent document

OptimiseRange

Calls the range optimization algorithm and updates RangeCenter and
RangeSpan

CopyToClipboard

Copy the current chart as a bitmap to the clipboard

7.4.1 Properties

7.4.1.1 Chart::Active

Returns or sets the chart's activation flag

Syntax

objChart.Active [=flag]

Setting

©2022 by Nanosurf, all rights reserved

Object Reference 119

Argument Type Description
flag Boolean Active defines the selection state of the chart.
Remarks

The Active property reflects the selection state of the chart. Only one chart can be
active at a single time. If the activation property is set to True and another chart was
active this old chart will loos its selection state. Also the user can change the activation
by clicking with the left mouse button anywhere in the chart's window area.

Example

I f obj Chart.Active Then
do sonet hi ng
End If

See also

None.

7.4.1.2 Chart::AxisShow
Returns or sets the chart's axis visibility flag
Syntax

objChart.AxisShow [=flag]

Setting

Argument Type Description

flag Boolean AxisShow defines if the axis of the graph is drawn or not.
Remarks

The AxisShow property defines if the chart is drawing axis label information or not. Set
this property to Tr ue if axis labels should be displayed.

Example

draw axi s | abels
obj Chart . Axi sShow = True

See also

None.

©2022 by Nanosurf, all rights reserved

120 Script Programmers Manual

7.4.1.3 Chart::Filter

Returns or sets the chart's mathematical filter
Syntax

objChart.Filter [= filter]
Setting

Argument Type Description

filter short filter defines the mathematical algorithm. It has to be one of the
values defined in the table below

Remarks

The Filter property defines the mathematical algorithm applyed to each data line prior it
is drawn to the chart.

Table of implemented Filter:

Type number(Description

RAW Data. (No operation)

Mean fit.

Derived Data

Parabola fit

0
1
2 Line fit
3
4
5

Polynomial fit

Detailed description of the algorithm are described in the Software Reference Manual.

Example

objChart.Filter =2 ' activate line fit algo.

See also

Software Reference Manual.

©2022 by Nanosurf, all rights reserved

Object Reference 121

7.4.1.4 Chart::Group

Returns or sets the group index of the chart's associated data container.
Syntax

objChart.Group [= group]
Setting

Argument Type Description

group short group defines the index of the data container displayed by the chart

Remarks

The Group property is storing the group index of the data container display by the
chart. To identify a data container the Property Signal has to be set correctly too.

It is legal to set Group and Signal to values which has no associated data container in
the document. An empty chart will be display in this case. Negative values are not
allowed and are reset to zero.

Example

activate a specific data container (Scan Forward, Topography)
obj Chart.Group =0
obj Chart.Signal =1

See also

Signal Property

7.4.1.5 Chart::Pos

Returns or sets the position of the chart the document window.
Syntax

objChart.Pos [= pos]
Setting

Argument Type Description

pos short pos defines the position of the chart in the list of a document

Remarks

©2022 by Nanosurf, all rights reserved

122

Script Programmers Manual

7.4.1.6

Chart class instances are stored in the parent document in a list. The Pos property is

containing the list position of a chart. Charts are displayed in the Document window in
their list position starting by position zero.

The position of a chart is defining its place on screen. The charts are arranged to fit
best the document's window size. The chart with position zero is display first in the top
left corner of the document window, subsequent charts are placed below the last chart
until the size of the window is reached. Then the new chart is placed one row to the
right at the top of the window.

If the value -1 is assigned to the Pos property the chart class is placed at the end of the
list and the Pos property value is set accordingly.
Example

nove a chart to the end
obj Chart.Pos = -1

See also

Doc.ChartCreate Method

Chart::RangeAutoSet
Returns or sets the chart's flag for automatically range selection
Syntax

objChart.RangeAutoSet [= flag]

Setting
Argument Type Description
flag Boolean RangeAutoSet defines if the chart's data range is automatically
optimized or not.
Remarks

The RangeAutoSet defines if the chart's data range is automatically optimized or not.
Set this property to True if optimisation is desired.

The optimisation algorithm uses histogram analysis to detect the optimal display range
for the data. Display range in a document is only optimized at change of properties like
Group, Signal and Filter.

©2022 by Nanosurf, all rights reserved

Object Reference 123

To optimize the display range for data calculated by a script call OptimiseRange
Method after the calculation is done.

Example

enabl e optim sation
obj Chart. RangeAut 0Set = True

See also

None.

7.4.1.7 Chart::RangeCenter

Returns or sets the chart's center of the display data
Syntax

objChart.RangeCenter [= center]
Setting

Argument Type Description

center double Defines the center value of the displayed data range..

Remarks

The RangeSpan is used together with RangeCenter and defines values which are
displayed. The values have to be inside this range to be display.

Minimal data value = RangeCenter - RangeSpan/2
Maximal data value = RangeCenter + RangeSpan/2

The chart implements a algorithm to optimize RangeCenter and RangeSpan. See
OptimiseRange Method.

Example

change the brightness of a chart
obj Chart. RangeCent er = obj Chart. RangeCenter * 1.1

See also

RangeSpan Property.

©2022 by Nanosurf, all rights reserved

124 Script Programmers Manual

7.4.1.8 Chart::RangeSpan

Returns or sets the chart's span of the display data
Syntax

objChart.RangeSpan [= span]
Setting

Argument Type Description

span double Defines the span of the displayed data range..

Remarks

The RangeSpan is used together with RangeCenter and defines values which are
displayed. The values have to be inside this range to be display.

Minimal data value = RangeCenter - RangeSpan/2
Maximal data value = RangeCenter + RangeSpan/2

The chart implements a algorithm to optimize RangeCenter and RangeSpan. See
OptimiseRange Method.

Example

change the contrast of a chart
obj Chart. RangeSpan = obj Chart. RangeSpan*2

See also

RangeCenter Property.

7.4.1.9 Chart::Signal

Returns or sets the signal number of the chart's associated data container.
Syntax

objChart.Signal [= signal]
Setting

Argument Type Description

signal short signal defines the channel number of the data container displayed

©2022 by Nanosurf, all rights reserved

Object Reference

by the chart

Remarks

125

The Signal property is storing the channel number of the data container display by the

chart. To identify a data container the property Group has to be set correctly too.

It is legal to set Group and Signal to values which has no associated data container in

the document. An empty chart will be display in this case. Negative values are not

allowed and are reset to zero.

Example

activate a specific data container (Scan Forward, Topography)
obj Chart. Group 0
obj Chart. Si gnal 1

See also

Group Property

7.4.1.10 Chart::Type

Returns or sets the chart's display style for the data values.
Syntax

objChart.Type [=type]
Setting

Argument Type Description

type short type defines the display style. It has to be one of the values defined

in the table below

Remarks

The Type property defines the style of the graph used to display the data values of the

data container.

Table of Type styles:

Type number|Description

0 Line graph style

1 Colour map style

©2022 by Nanosurf, all rights reserved

126

Script Programmers Manual

2 3D view style

3 Shaded colour map style
4 Dual line graph style

5 XY line graph style

Example

obj Chart. Type =3 ' activate shaded col our map

See also

none.

7.4.1.11 Chart::ViewSize

Returns or sets the chart's size on screen
Syntax

objChart.ViewSize [=size]
Setting

Argument Type Description

size short Defines the size of the chart on screen in pixel.

Remarks

The ViewSize defines the size of the charts output in pixel. Not the outer chart frame
size is defined but the actual plot area of the data. This helps preventing aliasing or
moire effects on the display if the output size has a even size compared to the number
of data measured in a data container.

Example

change the size of a chart
obj Chart. Vi ewSi ze = 256

See also

Class Data.

©2022 by Nanosurf, all rights reserved

Object Reference

7.4.2
7.4.2.1

7.4.2.2

Methods
Chart::CopyToClipboard

Copy the current chart as a bitmap to the clipboard.

Syntax
objChart.CopyToClipboard()
Arguments
none
Result

Result Type Description

ok Boolean Returns Tr ue if successful
Remarks

none

Example
obj Chart. CopyToCl i pboard

See also

Chart::GetDocument

Returns a IDispatch object to the parent Document class.

Syntax
objDoc = objChart.GetDocument()
Arguments
none.

Result

127

©2022 by Nanosurf, all rights reserved

128 Script Programmers Manual

Result Type Description
objboc Object A IDispatch object to the parent document class
Remarks

The GetDocument() method returns a IDispatch object to the Document class where
this class is stored.

Example

Set obj Doc = obj Chart. Get Docunent ()
if obj App.IsObj (obj Doc) then

MsgBox "The chart's parent is : " & objDoc. Nanme
end if

See also

Class Document

7.4.2.3 Chart::OptimiseRange

Recalculate the display range values RangeCenter and RangeSpan.
Syntax
objChart.OptimiseRange()
Arguments
none
Result

Result Type Description

ok Boolean Returns Tr ue if successful

Remarks

The OptimiseRange method calculates new RangeSpan and RangeCenter property
values in order to optimize the visibility of the data.

It's using depending on the charts display type and filter different algorithm.

e Colour map types is using a calculation an histogram of the data and find the best
value range out of this analysis.

©2022 by Nanosurf, all rights reserved

Object Reference 129

¢ The line graph types is using a histogram analysis too but with different thresholds.

It's useful to call this method after a script has calculated new data and filled them into
a data container.

Example
obj Chart. Opti m seRange ' maxim ze and activate this docunent

See also

RangeAutoSet Property, RangeCenter Property, RangeSpan Property.

7.5 Data

The Data class represents a storage container for measured data values. The data values
are named as points. Multiple points are organized in a line. Multiple such Data lines are
stored in the container. Another way on looking at the stored data is that of a 2D-Matrix
with a with of Points and a height of Lines.

Data are stored as 16 bit values in the matrix but the Data class knows the physical data
values and is able to convert between the internal 16Bit Raw data and the physical values.
Therefore the class saves for each axis a name, a unit, a minimum and a range value.
See

The contents of each line can by flagged with attributes about its validity. This is useful for
algorithms or chart display classes to know which contents is meaningful or new. See
method SetLineFlag or property BufferEmpty.

Table of properties of class Data:

Property name Purpose

Points Number of data values per line

Lines Number of data lines per container

CurrentLine Active line

BufferEmpty Flags if container has real data stored or is just initialized
AxisPointName Name string of the point axis

AxisPointUnit Physical unit of the point axis

AxisPointMin Physical value of first point in line

AxisPointRange Physical value range of from first to last point in line

©2022 by Nanosurf, all rights reserved

130

Script Programmers Manual

AxisLineName

Name string of the line axis

AxisLineUnit

Physical unit of the line axis

AxisLineMin

Physical value of first line in container

AxisLineRange

Physical value range of from first to last line in container

AxisSignalName

Name string of the signal axis

AxisSignalUnit

Physical unit of the signal axis

AxisSignalMin

Physical value of most negative data value

AxisSignalRange

Physical value range of over the full 16Bit range

LineDataPoints

Number of data values of a specified line

LineDataMin

Physical value of first point in a specified line

LineDataRange

Physical value range of from first to last point in a specified line

Table of methods of class Data:

Method name

Purpose

SetLine / SetLine2

\Write an string array of points in the container in different data format.

\Value passed as String or Variant Array

GetlLine / GetLine2

Retrieve an string array of points from the container in different data format.

Value passed as String or Variant Array

SetPixel / SetPixel2

\Write a data point in different data format.

\Value passed as String / Variant

GetPixel /| GetPixel2

Read a data point in different data format.

Value passed as String / Variant

SetLineRAW /
SetLineRAW?2

Sawe an array of points in the container as 16/32Bit values.

Value passed as String / Variant Array

GetLineRAW /
SetLineRAW?2

Retrieve an array of points from the container as 16/32Bit values.

Value passed as String / Variant Array

SetPixelRAW /
SetPixelRAW?2

Write a 16/32Bit data point. Value passed as String / Variant

GetPixelRAW /
GetPixelRAW?2

Read a 16/32Bit data point. Value passed as String / Variant

SetLineFlags

Modify the state flag of a stored line

GetLineFlags

Read the state flag

GetDocument

Retrieves the IDispatch object to the charts parent document

©2022 by Nanosurf, all rights reserved

Object Reference 131

GetGrouplD Retrieves the ID associated with this container

GetGroup Retrieves the group index associated with this container
GetSignal Retrieves the signal number associated with this container
RemoweLine Remowe a specified data line

SwapLines Swap the content of two lines

7.5.1 Properties

7.5.1.1 Data::AxisLineMin

Returns or sets the physical minimal value used by the line axis.
Syntax

objData.AxisLineMin [= minium]
Setting

Argument Type Description

minimum double Physical mininimal value

Remarks

The AxisLineMin physical value corresponds to the line with index zero (bottom one).
Example

set the physical range of the line axis

obj Dat a. Axi sLineUnit = "ni 'met er
obj Dat a. Axi sLi neM n = 0.0
obj Dat a. Axi sLi neRange = le-6

See also

AxisLineUnit Property, AxisLineRange Property

7.5.1.2 Data::AxisLineName

Returns or sets the name of the line axis.
Syntax

objData.AxisLineName [= name]

©2022 by Nanosurf, all rights reserved

132 Script Programmers Manual

Setting

Argument Type Description

name string Name of the axis

Remarks

Each axis has its own name. This hame is display along the graph in the chart display.

Example
set the nane of the axis
obj Dat a. Axi sPoi nt Nane = "X-Axis"
obj Dat a. Axi sLi neName = "Y-Axis"
obj Dat a. Axi sSi gnal Nane = "Topogr aphy"

See also

AxisLineUnit Property, AxisLineMin Property, AxisLineRange Property

7.5.1.3 Data::AxisLineRange

Returns or sets the physical range value used by the line axis.
Syntax

objData.AxisLineRange [=range]
Setting

Argument Type Description

range double Physical range of the axis

Remarks

The AxisLineRange value defines the physical value range span over all data lines in

the container.
The maximal physical value of the top line Lines-1 is AxisLineMin+AxisLineRange.

Example

set the physical range of the line axis

obj Dat a. Axi sLineUnit = "m' "meter
obj Dat a. Axi sLi neM n = 0.0
obj Dat a. Axi sLi neRange = le-6

©2022 by Nanosurf, all rights reserved

Object Reference 133

See also

AxisLineUnit Property, AxisLineMin Property

7.5.1.4 Data::AxisLineUnit
Returns or sets the physical unit used by the line axis.
Syntax

objData.AxisLineUnit [= unit]

Setting

Argument Type Description

unit string Physical unit name of the axis
Remarks

The values of an axis can be display by physical units. The unit has to be defined is in
its base without exponential extension like 'n' for nano. The chart is responsible to
display the values in an appropriate way.

Example

set the physical range of the line axis

obj Dat a. Axi sLineUnit = "nf "meter
obj Dat a. Axi sLi neM n = 0.0
obj Dat a. Axi sLi neRange = le-6

See also

AxisLineMin Property, AxisLineRange Property

7.5.1.5 Data::AxisPointMin

Returns or sets the physical minimal value used by the point axis.
Syntax
objData.AxisPointMin [= minium]

Setting

©2022 by Nanosurf, all rights reserved

134 Script Programmers Manual

Argument Type Description

minimum double Physical mininimal value

Remarks

The AxisPointMin physical value corresponds to the point with index zero (most left

one).
Example
set the physical range of the point axis
obj Dat a. Axi sPointUnit = "ni "meter
obj Dat a. Axi sPoi nt M n = 0.0
obj Dat a. Axi sPoi nt Range = 1le-6

See also

AxisPointUnit Property, AxisPointRange Property

7.5.1.6 Data::AxisPointName

Returns or sets the name of the point axis.
Syntax

objData.AxisPointName [= name |
Setting

Argument Type Description

name string Name of the axis

Remarks

Each axis has its own name. This name is display along the graph in the chart display.

Example
set the nane of the axis
obj Dat a. Axi sPoi nt Name = "X- Axi s"
obj Dat a. Axi sLi neName = "Y-Axis"
obj Dat a. Axi sSi gnal Name = "Topogr aphy"

See also

AxisPointUnit Property, AxisPointMin Property, AxisPointRange Property

©2022 by Nanosurf, all rights reserved

Object Reference 135

7.5.1.7 Data::AxisPointRange

Returns or sets the physical range value used by the point axis.
Syntax

objData.AxisPointRange [=range]
Setting

Argument Type Description

range double Physical range of the axis

Remarks

The AxisPointRange value defines the physical value range span over all data point in
a line.

The maximal physical value of the last point Points-1 is AxisPointMin
+AxisPointRange.

Example

set the physical range of the point axis

obj Dat a. Axi sPointUnit = "ni "nmeter
obj Dat a. Axi sPoi nt M n = 0.0
obj Dat a. Axi sPoi nt Range = le-6

See also

AxisPointUnit Property, AxisPointMin Property

7.5.1.8 Data::AxisPointUnit

Returns or sets the physical unit used by the point axis.
Syntax

objData.AxisPointUnit [= unit]
Setting

Argument Type Description

©2022 by Nanosurf, all rights reserved

136 Script Programmers Manual

unit string Physical unit name of the axis

Remarks
The values of an axis can be display by physical units. The unit has to be defined is in
its base without exponential extension like 'n* for nano. The chart is responsible to
display the values in an appropriate way.

Example

set the physical range of the point axis

obj Dat a. Axi sPointUnit = "ni "meter
obj Dat a. Axi sPoi nt M n = 0.0
obj Dat a. Axi sRangeRange = 1le-6

See also

AxisPointMin Property, AxisPointRange Property

7.5.1.9 Data::AxisSignalMin

Returns or sets the physical minimal value defined for the minimal data value
Syntax

objData.AxisSignalMin [= minium]
Setting

Argument Type Description
minimum double Physical mininimal value
Remarks

The AxisSignalMin physical value corresponds to the minimal 16Bit data value of -
32768 (-215).

Example
set the physical range of the data values to +-10V
obj Dat a. Axi sSignal Unit = "V" "vol t age
obj Dat a. Axi sSi gnal M n = -10.0
obj Dat a. Axi sSi gnal Range = 20.0

See also

AxisSignalUnit Property, AxisSignalRange Property

©2022 by Nanosurf, all rights reserved

Object Reference 137

7.5.1.10 Data::AxisSignalName

Returns or sets the name of the signal values stored in the container.
Syntax

objData.AxisSignadName [= name]
Setting

Argument Type Description

name string Name of the axis

Remarks

The data values stored in a container can be lable by this name. This name is display
on top of the graph in the chart display.

Example

set the nane of the axis

obj Dat a. Axi sPoi nt Nane = "X-Axis"
obj Dat a. Axi sLi neNanme = "Y-Axis"
obj Dat a. Axi sSi gnal Nane = "Topography"

See also

Axis SignadUnit Property, AxisSignalMin Property, AxisSignalRange Property

7.5.1.11 Data::AxisSighalRange
Returns or sets the physical range value defined for the full data range
Syntax

objData.AxisSignalRange [=range]

Setting

Argument Type Description

range double Physical range of data values
Remarks

©2022 by Nanosurf, all rights reserved

138 Script Programmers Manual

The AxisSignalRange value defines the physical value range span over the 16Bit data
value range.

The maximal physical value of the maximal data value (2"15-1=+32767) is
AxisSignalMin+AxisSignalRange.

Example
set the physical range of the data values to +-10V
obj Dat a. Axi sSignal Unit = "V" "vol t age
obj Dat a. Axi sSi gnal M n = -10.0
obj Dat a. Axi sSi gnal Range = 20.0

See also

AxisSignalUnit Property, AxisSignalMin Property

7.5.1.12 Data::AxisSignalUnit
Returns or sets the physical unit used by the signal axis.
Syntax

objData.AxisSignalUnit [= unit]

Setting

Argument Type Description

unit string Physical unit name of the axis
Remarks

The values of the data values stored in the container can be display by physical units.
The unit has to be defined is in its base without exponential extension like 'n' for nano.
The chart is responsible to display the values in an appropriate way.

Example

set the physical range of the data values to +-10V

obj Dat a. Axi sSignalUnit = "V" "vol t age
obj Dat a. Axi sSi gnal M n = -10.0
obj Dat a. Axi sSi gnal Range = 20.0

See also

AxisSignalMin Property, AxisSignalRange Property

©2022 by Nanosurf, all rights reserved

Object Reference 139

7.5.1.13 Data::BufferEmpty

Returns or sets the flag indicating if the data container has valid data or not
Syntax

objData.BufferEmpty [= flag]
Setting

Argument Type Description

flag Boolean True if no data are stored in the container

Remarks

The container is flagged as empty when the buffer is initialized or set by this property
manually.
It is automatically flagged as not empty if one of the data store methods are called.

Example

di splay the contents of a container
I f Not obj Data.BufferEnmpty Then

MsgBox "Stored signal is :" & objData.AxisSignal Name
End I f

See also

SetLine Method, SetLineRAW Method, SetPixel Method, SetPixelRAW Method

7.5.1.14 Data::CurrentLine

Returns or sets the number of data lines stored in the container.
Syntax

objData.CurrentLine [=line]
Setting

Argument Type Description

line short defines which line index should be the current one

©2022 by Nanosurf, all rights reserved

140

Script Programmers Manual

Remarks

One data line is marked as the current one. These marking is distributed to all data
container of a document with the same GroupID. The current line will be used by
charts to highlight the special line. The current line is automatically set by data
modification methods like SetLine().

The range of valid numbers for CurrentLine is 0 to Lines-1.

Example

extract the first data value of the current |ine
val = obj Dat a. Get Pi xel RAW 0, obj Dat a. Current Li ne)

See also

Lines Property, SetLine Method

7.5.1.15 Data::Lines

Returns or sets the number of data lines stored in the container.
Syntax

objData.Lines [=lines]
Setting

Argument Type Description

lines short lines defines the number data lines stored in the container

Remarks

Data values are stored in the container as a matrix in the form point x lines. The
memory reserved for the matrix is defined by the Points and Lines properties.

The minimum matrix size is a 1 x 1 matrix. The maximum a 2048 x 2048. The size do
not have to be symmetrical (e.g A single measurement line of 128 data points is stored
in a 128 x 1 matrix).

If the size of the matrix is changed all data are lost and the matrix is initialized with zero
values, all line flags are set to Invalid and the buffer is marked as empty.

Example

initialize a data container for a single measurenment |ine
obj Dat a. Poi nts = 256
obj Data.Lines =1

©2022 by Nanosurf, all rights reserved

Object Reference 141

See also

Points Property, BufferEmpty Property, Setline flags Method

7.5.1.16 Data::Points
Returns or sets the number of data values stored in each data line.
Syntax

objData.Points [= points]

Setting

Argument|Type Description

points short points defines the number data values stored in each line
Remarks

Data values are stored in the container as a matrix in the form point x lines. The
memory reserved for the matrix is defined by the Points and Lines properties.

The minimum matrix size is a 1 x 1 matrix. The maximum a 2048 x 2048. The size do
not have to be symmetrical (e.g A single measurement line of 128 data points is stored
in a 128 x 1 matrix).

If the size of the matrix is changed all data are lost and the matrix is initialized with zero
values, all line flags are set to Invalid and the buffer is marked as empty.

Example
initialize a data container for a single nmeasurenment |ine
obj Dat a. Poi nts = 256
objData.Lines =1
See also

Lines Property, BufferEmpty Property, Setline flags Method

75.2 Methods
7.5.2.1 Data::GetDocument

Returns a IDispatch object to the parent Document class.

Syntax

©2022 by Nanosurf, all rights reserved

142 Script Programmers Manual

objDoc = objData.GetDocument()
Arguments
none.
Result
Result Type Description

objDoc Object A IDispatch object to the parent document class

Remarks

The GetDocument() method returns a IDispatch object to the Document class where
this class is stored.

Example

Set obj Doc = obj Dat a. Get Document ()
i f obj App.|1sObj (obj Doc) then

MsgBox "The data's are is stored in: " & objDoc. Nane
end if

See also

Class Document

7.5.2.2 Data::GetGroup

Returns the data objects group index of the parent Document class.

Syntax

pos = objData.GetGroup()

Arguments
none.
Result
Result Type Description
pos short Returns the group index of the data container

©2022 by Nanosurf, all rights reserved

Object Reference 143

Remarks

The GetGroup() method returns the group index where this data class ist stored in
the list of containers of the parent document class. The exact position is defined in
combination with GetSignal() method.

Example
nysignal = obj Data. Get Si gnal ()
nmygroup = obj Data. Get Group()
See also

Class Document, GetSignal Method

7.5.2.3 Data::GetGrouplD
Returns the data objects group ID number of the parent Document class.
Syntax

id = objData.GetGrouplD()

Arguments
none.
Result
Result Type Description
id short Returns the ID number of the data container
Remarks

The GetGrouplID() method returns the group ID associated with this data container in
the parent document class.

Example
nyi d = obj Dat a. Get Groupl D()
mygroup = obj Dat a. Get GroupPos()
See also

Class Document, GetGroupPos Method

©2022 by Nanosurf, all rights reserved

144

Script Programmers Manual

7.5.2.4

Data::GetLine / GetLine2

Returns a array of data values of a stored data line.

Syntax

str_array = objData.GetLine(line filter,conversion)
variant_array = objData.GetLine2(linefilter,conversion)

Argument
Paramete [Type Description
r
line short desired line index
filter short index of mathematical filter to be used
conversion |short index of conwersion type of results
Result
Result Type Description
str_array |String Character string with comma separated values of all the values of
the data line
variant_arr |[double |Variant array of numbers of all the values of the data line
ay
Remarks

This method returns a string of data values of a data line stored in the container. The
signal will be extracted and the data values are processed with a filters as available for
the user in the "Chart Toolbar". The result is in a comma separated string in different
numerical formats.

The argument line is the number of the data line to extract. O is the bottom line and the
value property Lines -1 the top most one.

The argument filter defines the data processing algorithm to be used.

Table of filter index:

Filter | Filter Name Description
No.
0 FilterRaw No data processing

©2022 by Nanosurf, all rights reserved

Object Reference 145

FilterMean The mean value is subtracted
FilterPlane The background plane is subtracted
FilterDerive The derivative of the signal is calculated

FilterParabola A second order fit is subtracted

gl M| W N| =

FilterPolynominal |A forth order fill is subtracted

For more detailed description of the filter algorithm please refer to the Nanosurf
Software Reference Manual.

The argument conversion defines the format of the resulting string array.

Table of conversion index:

Conversio| Conversion Name Description
n No.
0 ConversionBinary16Output as signed 16bit data values
1 ConversionPhysical[Output as floating point values in physical base unit
2 ConversionBinary32Output as signed 32bit data values
Example

get data line 5 with no filter and as 16bit val ues
dat al i ne = obj Data. GetLi ne(5, 0, 0)
MsgBox dat al i ne

calc mean value of current line, plane fit filter active and in physical units
dat al i ne = obj Dat a. GetLi ne(obj Data. Currentline, 2,1)
dataarray = Split(dataline,",")
sum = 0.0
For i = 0 To obj Data. Points-1
sum = sum + CDbl (dataarray(i))
Next
MsgBox "Mean value of line " & objData.CurrentLine & " is " & (sum/

obj Dat a. Poi nt's)
See also

Lines Property, SetLine Method

7.5.2.5 Data::GetLineFlags

Get the line attributes

Syntax

©2022 by Nanosurf, all rights reserved

146 Script Programmers Manual

mask = objData.GetLineFlag(line)

Argument

Paramete [Type Description

r

line short desired line index
Result

Result Type Description

mask short Current list of attributs set for the line
Remarks

This method reads the attributes of a line.

See SetlLineFlags Method for defined attributs.

Example

calc mean val ue of data container but ignore invalid |lines
sum = 0.0
validlines = 0
For y = 0 To objData.Lines-1
| f obj Data. GetLi neFl ags(y) <> 0 Then
datal i ne = obj Dat a. Get Li ne(y, 0, 1)
dataarray = Split(dataline,",")
For x = 0 To obj Data. Points-1
sum = sum + CDbl (dataarray(x))
Next
validlines = validlines + 1
End If
Next
if validlines > 0 then
MsgBox "Mean val ue of container is " & (sum/ validlines)
el se
MsgBox "No valid data in container”
end if

See also

Lines Property, SetLineFlags Method

7.5.2.6 Data::GetLineRAW / GetLineRAW?2

Returns a string of data values or a variant array of a stored data line.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 147

str_array = objData.GetLineRAW(line)
varinat_array = objData.GetLineRAW2(line)

Argument
Paramete [Type Description
;
line short desired line index
Result
Result Type Description
str_array |String Character string with comma separated values of all the values of
the data line
varinat_arr [int16, Variant array of all the values in the line
ay Int32
Remarks

This method returns a array of data values of a data line stored in the container.
The result is in a comma separated string in a numerical format.
The range of this numbers is for C3000 32Bit, for all other 16Bit.

The argument line is the number of the data line to extract. O is the bottom line and the
value property Lines -1 the top most one.

This is a faster but simpler version of GetLine Method. Not data processing nor
conversion is done.

Example

get quickly the current line
dat al i ne = obj Dat a. Get Li ne(obj Dat a. Current Li ne)
MsgBox dat al i ne

See also

Lines Property, GetLine Method, SetLineRAW Method

7.5.2.7 Data::GetPixel / GetPixel2

Returns the data value of a specified point as string

Syntax

©2022 by Nanosurf, all rights reserved

148

Script Programmers Manual

str_val = objData.GetPixel(point,line,filter,conversion)

variant_val = objData.GetPixel2(point,linefilter,conversion)

Argument
Paramete [Type Description
r
point short desired point number
line short desired line index
filter short index of mathematical filter to be used
conversion |short index of conwersion type of results
Result
Result Type Description
val String String of the data value in the desired conversion format
variant_val |[double |Number of the data value in the desired conversion format
Remarks

This method returns a string with the data value at a specified (point,line) position. The
data value is processed with a filter defined by filter. The result is a string value in
different numerical formats.

The argument point is the position index in the data line to be read. The index has to be

from O to Points -1.

The argument line is the number of the data line to extract. O is the bottom line and
Lines -1 the top most one.

The argument filter and conversion defines the data processing algorithm and
formatting to be used.

See parameter tables at GetlLine.

Example

get data at (10,20) with no filter and as 16bit val ues

dat axy = obj Dat a. Get Poi nt (10, 20, 0, 0)

MsgBox dat axy

See also

SetPixel Method, GetLine Method

©2022 by Nanosurf, all rights reserved

Object Reference 149

7.5.2.8 Data::GetPixelRAW / GetPixelRAW?2

Returns the data value of a specified point as string
Syntax

str_val = objData.GetPixel(point,line)
variant_val = objData.GetPixel(point,line)

Argument
Paramete [Type Description
r
point short desired point number
line short desired line index
Result
Result Type Description
str_val long data value as string
variant_val [int16, data value as integer
int32
Remarks

This method returns the data value at a specified (point,line) position.
The result is in a string in a numerical format.
The range of this numbers is for C3000 32Bit, for all other 16Bit.

The argument point is the position index in the data line to be read. The index has to be
from O to Points -1.

The argument line is the number of the data line to extract. 0 is the bottom line and
Lines -1 the top most one.

This is a faster but simpler version of GetPixel Method. Not data processing nor
conversion is done.

Example

get data at (10, 20)
dat axy = obj Dat a. Get Poi nt RAW(10, 20)
MsgBox dat axy

See also

SetPixel Method, SetPixelRAW Method, GetLine Method

©2022 by Nanosurf, all rights reserved

150 Script Programmers Manual

7.5.2.9 Data::GetSignal

Returns the data objects signal number of the parent Document class.
Syntax
pos = objData.GetSignal()
Arguments
none.
Result

Result Type Description

pos short Returns the signal position number of the data container

Remarks

The GetSignal() method returns the signal position number where this data class ist
stored in the list of containers of the parent document class. The exact position is
defined in combination with GetGroup() method.

Example
nysi gnal = obj Dat a. Get Si gnal ()
mygroup = obj Data. Get Group()
See also

Class Document, GetGroup Method

7.5.2.10 Data::SetLine / SetLine2

Store a string of data values into the container

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 151

ok = objData.SetLine(line,conversion, str_dataarray)
ok = objData.SetLine(line,conversion, variant_dataarray)

Argument
Parameter Type |Description
line short desired line index
conwersion short conwersion type used for processing data string
dataarray short String array with comma separated values
variant_dataarra [number |variant of numbers array with comma separated values
y

Result
Result Type Description
ok Boolean [True is successful

Remarks

This method write a string of data values into a data line of the container.

The argument line is the number of the data line to be overwritten. O is the bottom line
and the value property Lines -1 the top most one.

The argument conversion defines the format of the data string array. Table of
conversion index:

Conversio| Conversion Name Description
n No.
0 ConversionBinary16| Values are signed 16bit data number
1 ConversionPhysical | Values are floating point number in physical base unit
2 ConversionBinary32| Values are signed 32bit data number

The actual data is parameter dataarray. It have to be a comma separated string array
of values in the specified format as declared in conversion.

Note: There are localization version of the operating systems where numbers are
displayed with a comma as decimal points (e.g. German version of Windows). To
support these OS versions, its possible to use a semi column character to separate
numbers.

Example

©2022 by Nanosurf, all rights reserved

152 Script Programmers Manual

flatten and apply maxi num t hreshol d
MaxVal ue = 10.0e-9 'm

For curline = 0 To obj Data. Lines-1
dat al i ne = obj Dat a. Get Li ne(curline, 2, 1)
dataarray = Split(dataline,",")

For i = 0 To obj Data. Points-1
| f CDbl (dataarray(i)) > MaxVal ue Then
dataarray(i) = MaxVal ue

End If
Next
datal ine = Join(dataarray,";")
ok = obj Data. SetLine(curline,1,dataline)
Next
See also

Lines Property, Points Property, GetLine Method

Version info

Semi column as separator character: Software v1.6.1 or later

7.5.2.11 Data::SetLineFlags
Set the line attributes
Syntax

ok = objData.SetLineFlag(line, mask)

Argument

Paramete [Type Description

r

line short desired line index

mask short List of attributes to set
Result

Result Type Description

ok Boolean [true is successful
Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 153

This method defines the attributes of a line. to set multible attributes just added they
values together.

Table of attributes index:

Atrribute | Conversion Name |Description

value
1 DataValid The values in the line are valid number for processing
2 CurrentData This attribute marks the data values in the line as new

At initialisation of a Data object or after resizing the DataVaild attribute is cleared. It is
set automatically by a call of SetLine() method. Data processing algorithm should
ignore data lines with cleared DataVaild attribute.

A data line can have the CurrentData attribute set. This is useful to distinguish between
old and new data in the same data container (e.g during a imaging a container may be
partly filled by data measured by an up frame while scanning down and some data are
overwriten with the new scan line as they are measured).

Example

mark line zero as Valid and Current
ok = obj Dat a. Set Li neFl ag(0, 1+2)

See also

Lines Property, GetLineFlags Method

7.5.2.12 Data::SetLineRAW / SetLineRAW?2

Store a string of data values into the container
Syntax

ok = objData.SetLineRAW(line, str_dataarray)
ok = objData.SetLineRAW2(line, variant_dataarray)

Argument

Parameter Type |Description

©2022 by Nanosurf, all rights reserved

154 Script Programmers Manual

line short |desired line index

str_dataarray |short |String array with comma separated values

\varinat_dataarrallong binary array of values

y
Result

Result Type Description

ok Boolean [true is successful
Remarks

This method write a string of data values into a data line of the container.

The argument line is the number of the data line to be overwritten. O is the bottom line
and the value property Lines -1 the top most one.

The actual data is parameter dataarray.
The result is in a string array in a numerical format.
The range of this numbers is for the C3000 controller 32Bit, for all other systems 16Bit.

This is a faster but simpler version of SetLine Method. Not data processing nor
conversion is done.

Example

repl ace sone data values in the top line
ok = obj Dat a. Set Li ne(obj Data. Lines-1,"-1,2,-3,4,-5,6,-7,8")

See also

Lines Property, Points Property, GetLineRAW Method, SetLine Method

7.5.2.13 Data::SetPixel / SetPixel2

Overwrite a data point with new value
Syntax

ok = objData.SetPixel(point,line,conversion, str_value)
ok = objData.SetPixel2(point,line,conversion, variant_value)

©2022 by Nanosurf, all rights reserved

Object Reference 155

Argument
Paramete [Type Description
r
point short point index of destination position
line short line index of destination position
conwersion [short conwversion type used for processing data string
str_value |string string with value in specified format
\variant_val |[double double value in specified format
ue

Result
Result Type Description
ok Boolean [1rue is successful

Remarks

This method write a new value to a specified position in the container.

The argument point is the position index in the data line to be read. The index has to be
from O to Points -1.
The argument line is the number of the data line to extract. O is the bottom line and
Lines -1 the top most one.
The argument conversion defines the data format to be used. See parameter table at
SetLine.
The argument value contains the new value in the specified format as described in
conversion.

Example

write at (0,0) the value 1nm
obj Dat a. Axi sSignal Unit = "ni
ok = obj Dat a. Set Pi xel (0,0, 1, "1e-9")

See also

Lines Property, Points Property, SetLine Method

7.5.2.14 Data::SetPixelRAW / SetPixelRAW?2

Overwrite a data point with new value

Syntax

©2022 by Nanosurf, all rights reserved

156 Script Programmers Manual

ok = objData.SetPixel(point,line,str_value)
ok = objData.SetPixel2(point,line,variant_value)

Argument
Paramete [Type Description
;
point short point index of destination position
line short line index of destination position
str_value |long New data value as string
variant_val [long new data value as number
ue

Result
Result Type Description
ok Boolean [1rue is successful

Remarks

This method write a new value to a specified position in the container.

The argument point is the position index in the data line to be read. The index has to be
from O to Points -1.

The argument line is the number of the data line to extract. 0 is the bottom line and
Lines -1 the top most one.

The argument value contains the new value to be stored.

The range of this number is for the C3000 controller 32Bit, for all other systems 16Bit.

This is a faster but simpler version of SetPixel Method. Not data processing nor
conversion is done.

Example

write at (0,0) the value 1nm
obj Dat a. Axi sSignal Unit = "ni
ok = obj Dat a. Set Pi xel (0,0, 1, "1e-9")

See also

Lines Property, Points Property, SetLine Method

©2022 by Nanosurf, all rights reserved

Object Reference 157

7.6 Document
The Document class is a container for measured data and its visual representation.
Complete documents can be loaded or stored from/to the file system.
Its information is stored in three lists of the following types:

1. Measured values: Data values for signal channels are stored in data container.
Referenced by Data classes.

2. Visual appearance: Charts are displaying measured data with different styles on
screen. Each chart is stored in a Chart class.

3. General information: Additional information is grouped in sections of key value pairs.
Each info section is stored in a Info class.

Objects in these lists are retrieved by search methods.
New objects can be created and existing objects in the lists can be deleted.

For detailed description on how these lists are organized, refer to the individual chapter of
Class Data, Class Chart and Class Info.

Table of properties for Document class:

Property name Purpose

Name Contains then filename of the document

Table of methods for general usage of Document class:

Method name Purpose

Load Load the contents of a file into the document
Save Sawes the content of the document into a file
ShowWindow Control the windows \isual state

Table of methods for Chart object of document class:

Method name Purpose

ChartCount Retrieves the number of charts displayed in the document window
ChartCreate Create a new Chart object and display it

ChartGetActive Return a Chart object to the currently active chart

©2022 by Nanosurf, all rights reserved

158

Script Programmers Manual

ChartGetByPos

Return a Chart object to the chart at a position

ChartDeleteByPos

Remowes the chart at position

ChartDeleteAll

Remowes all charts of this document

Table of methods for Data object of document class:

Method name

Purpose

DataGroupCount

Retrieves the number of data groups

DataSignalCount

Retrieves the number of data objects in a specified group

DataCreate Creates a new Data class for a specified group and signal
DataGetActive Returns a Data object of the signal displayed by the active chart
DataGetByName Returns a Data object with the specified group and signal name

DataGetByPos

Returns a Data object with the specified group and signal number

DataDeleteByName

Deletes the stored values of a specified group and signal name

DataDeleteByPos

Deletes the stored values of a specified group and signal number

DataDeleteGroup

Deletes a complete group of values

DataDeleteAll

Deletes all measured values

DataGetGrouplD

Retrieves the ID number of a specified group

DataSetGrouplD

Sets the ID number of a specified group

DataGetGroupName Retrieves the name of a specified group
DataSetGroupName Change the name of a specified group
DataGetGroupPos Retrieves the index of a named group

DataGetSignalPos

Retrieves the number of a signal in a group an known signal nhame

Table of methods for Info objects of document class:

Methode name Purpose
InfoCount Retrieves the number of info section in the document
InfoCreate Creates a new Info class with a specified name

InfoGetByName

Returns a Info object with a specified name

InfoGetByPos

Returns a Info object at a specified position

InfoDeleteByName

Removwes a information section with a specified name

InfoDeleteByPos

Remowes a information section at a specified position

©2022 by Nanosurf, all rights reserved

Object Reference 159

InfoDeleteAll Remowes all sections

7.6.1 Properties
7.6.1.1 Document::Name
Returns or sets the filename of the document.
Syntax
objDoc.Name [= filename]
Setting

Argument Type Description

flename String filename is a string containing the path and filename of the
document.

Remarks

The Name property is containing the uniqgue name of the document. If it is loaded from
file or stored already to a file the name is its path and filename.

The name of a newly created document is a path to its temporary storage and a
automaticaly assigne name.

Example

Di m obj Doc : Set obj Doc = obj App. DocCreate("", Not hi ng)
MsgBox "Auto assigned nanme is " & obj Doc. Nanme

See also

DocCreate Method, Load Method, Save Method

7.6.2 Methods

7.6.2.1 Document::ChartCount
Retrieves the number of charts displayed for this document
Syntax

count = objDoc.ChartCount()

©2022 by Nanosurf, all rights reserved

160

Script Programmers Manual

7.6.2.2

Arguments
none.
Result

Result Type Description

count short Returns the number of charts displayed

Remarks

The ChartCount() method retrieves the number of charts currently defined and
displayed for this document. Returns zero if no charts is defined yet.

Example
count = obj Doc. Chart Count ()
See also

Class Chart, ChartCreate Method

Document::ChartCreate
Creates a new charts and returns an Chart object to it.
Syntax

objChart = objDoc.ChartCreate(pos,srcchart)

Arguments
Argument Type Description
pos string The display position of the chart

srcchart object The contents of the source chart is copied if srcchart is not Not hi ng

Result

Result Type Description

objChart Object Returns an IDispatch object to the new chart or an invalid object
Remarks

The ChartCreate() method creates a new data display chart in the documents

©2022 by Nanosurf, all rights reserved

Object Reference 161

window.

The chart is inserted in the list of charts at position specified in the argument. If the
position is already occupied by another chart the old chart is shifted to the next higher
position. If the new position is higher than the last position it is replaced by the next
highest position. If the position is negative the chart is placed at the end of the list.
More information about the charts position reffer to Chart.Pos Property.

If the second argument srcchart is not Not hi ng the source charts contents is copied.

Example

create a new chart at the top left corner of the w ndow
Set obj Chart = obj Doc. Chart Creat e(0, Not hi ng)

Create a Copy of the selected chart and append it
Set obj Src = obj Doc. Chart Get Acti ve()
Set obj Chart = obj Doc. Chart Create(-1, obj Src)

See also

Class Chart

7.6.2.3 Document::ChartDeleteAll

Removes all charts of the document

Syntax

done = objDoc.ChartDeleteAll()

Arguments

None.
Result

Result Type Description

done Boolean Returns True if all charts could be removed otherwise Fal se
Remarks

The ChartDeleteAll() method removes all charts of the document.

©2022 by Nanosurf, all rights reserved

162 Script Programmers Manual

Example

close all charts of active document
Set obj Doc = obj App. DocGet Acti ve()
I f obj App. | sObj (obj Doc) Then

obj Doc. Chart Del et eAl |
End If

See also

Class Chart

7.6.2.4 Document::ChartDeleteByPos

Deletes the n'th chart

Syntax

done = objDoc.ChartDeleteByPos(pos)

Arguments

Argument Type Description

pos short Removes the chart at specified position

Result

Result Type Description

done Boolean Returns Tr ue if the chart could be deleted otherwise Fal se

Remarks

The ChartDeleteByPos() method deletes the chart with position pos.
The argument has to be positiv and lower than the value return by ChartCount().

Example

close last chart

obj Doc. Chart Del et eByPos(obj Doc. Chart Count ()

close active chart

Set obj Chart = obj Doc. Chart Get Active()

obj Doc. Chart Del et eByPos(obj Chart . Pos)

See also

©2022 by Nanosurf, all rights reserved

Object Reference

Class Chart, ChartCount Method, Chart.Pos Property

7.6.2.5 Document::ChartGetActive

Returns a Chart class object associated with the current active chart.
Syntax
objChart = objDoc.ChartGetActive()
Arguments
none
Result

Result Type Description

163

objChart Object Returns a IDispatch object to the chart object which is active or an invalid

object reference if no active chart is available.

Remarks

The ChartGetActive() method returns a IDispatch object to the active chart. If no
chart is selected an invalid object is returned. This can be checked by objApp.IsObj().

Example

get access to the current chart
Set obj Chart = obj Doc. Chart Get Acti ve()
I f Not obj App.|sObj(objChart) Then
MsgBox "No chart sel ected"
End I f

See also

Class Chart, Chart.Active Property

©2022 by Nanosurf, all rights reserved

164 Script Programmers Manual

7.6.2.6 Document::ChartGetByPos

Returns a Chart class object at the specified position.
Syntax

objChart = objDoc.ChartGetByPos(pos)

Arguments

Argument Type Description

pos short chart position number
Result

Result Type Description

objChart Object Returns a IDispatch object for the chart at the given position or an invalid
object if pos >= ChartCount()

Remarks

The ChartGetByPos method returns a IDispatch object to the chart at a specified

position. If position is out of range an invalid object is returned. This can be checked by
0bjApp.IsObj().

The position is the index into an list which keeps track of all charts of a document. It
represents the n'th chart counted from top to down and left to right in the document
window.

Example

get nane of signal displayed in the first chart
Set obj Chart = obj Doc. Chart Get ByPos(0)
I f obj App.1sObj (objlInfo) Then
Set obj Data = obj Doc. Dat aGet ByPos(obj Chart. Group, obj Chart. Si gnal)

MsgBox "First chart displayes signal = " & obj Data. Axi sSi gnal Nane
El se
MsgBox "No Chart avail abl e"
End | f
See also
Class Chart,

©2022 by Nanosurf, all rights reserved

Object Reference 165

7.6.2.7 Document::DataCreate

Creates a new data container object and returns a reference to it.
Syntax

objData = objDoc.DataCreate(group,signal,srcinfo)
Arguments

Argument Type Description

group short Index of the group. If group does not exists it is created.Use -1 to
create the data container in a new group with automaticaly
choosen free index.

signal short Number of the signal channel. If signal is not existing ist is created. Use -1
to create the data container with automaticaly choosen free signal number.

srcdata object A reference to a source data container to copy its contents into the new
one or Not hi ng .

Result

Result Type Description

objData Object Returns an IDispatch object to the new data container or an invalid object

Remarks

The DataCreate method creates a new data container object. A Data container stores
the values of a signal as a result of a measurement or a calculation. Tha Data
containers which are measured synchronously are stored in a group (e.g Group "Scan
Forward" with two data container for signal "Topography" and "Phase").

Multiple groups of data containers can be stored in a document (e.g A document
contains group "Scan Forward", "Spectroscopy Forward" and "Spectroscopy
Backward", another document just contains the group "Cross section").

To place a Data Container in a document one have to define its group index and its
signal number. If the Imaging or Spectroscopy Modul created the document two of the
signal numbers have a fix assosiation with the measurement channels.

0 - Z-Feedback Error input signal
1 - Topography Signal

Note:

Individual signal should be referenced for future compatibility reason by their signal
names as much as possible. Use the signal number for loops through all signals or as
result of DataGetSignalPos(). Also the group indexes should only be used with loops
or as result of DataGetGroupPos().

©2022 by Nanosurf, all rights reserved

166

Script Programmers Manual

7.6.2.8

DataCreate() cannot overwriting an existing data container and returns a invalid
reference if a data container at the arguments position is allredy defined.

If one just need a new group to place a result of a calculation one can use -1 as a group
index for the group and or the signal argument.

If a new created data container should be preprared with existing data values set the
argument srcdata to a valid source data object.

Example

create a new channel in a new group and call the allocated group 'Result’
Set obj Data = obj Doc. Dat aCreat e(-1, -1, Not hi ng)
obj Doc. Set GroupNane obj Dat a. Get GroupPos(), "Resul t"

Copy the selected data into a new data container of a new docunment
Set obj SrcData = obj SrcDoc. Dat aGet Acti ve()
I f obj App.|sObj (obj SrcData) Then
Set obj Dest Doc = obj App. DocCreate("")
Set obj Dest Data = obj Dest Doc. Dat aCr eat e(-
1, obj SrcDat a. Get Si gnal Pos(), obj SrcDat a)
End | f

See also

Class Data, DataGetGroupPos Method, DataGetSignalPos Method, Application.lsObj
Method

Document::DataDeleteAll

Deletes all data containers of a document.
Syntax

ok = objDoc.DataDeleteAll()
Arguments

none
Result

Result Type Description

ok boolean True if all groups could be deleted.

©2022 by Nanosurf, all rights reserved

Object Reference 167

Remarks

The DataDeleteAll() method deletes all data containers and all groups within a
document.
If deletion could not be done Fal se is returned.

Example

Enmpty a docunent fromall data
ok = obj Doc. Dat aDel et eAl | ()

See also

Class Data, DataDeleteByName Method, DataDeleteAll Method, DataDeleteGroup
Method, DataDeleteAll Method

7.6.2.9 Document::DataDeleteByName

Deletes a data container.
Syntax

ok = objDoc.DataDeleteByName(groupname, signalname)
Arguments

Argument Type Description
groupname string name of group

signalnamestring name of signal

Result

Result Type Description

ok boolean True if data container could be deleted.

Remarks

The DataDeleteByName() method deletes a data container with specified group name
and signal name.
If the data container does not exists Fal se is returned.

Example

Del ete a specific data container
ok = obj Doc. Dat aDel et eByName(" Cross Section", "Phase")

©2022 by Nanosurf, all rights reserved

168

Script Programmers Manual

See also

Class Data, DataDeleteByPos Method, DataDeleteGroup Method, DataDeleteAll
Method

7.6.2.10 Document::DataDeleteByPos

Deletes a data container.
Syntax

ok = objDoc.DataDeleteByPos(group, signal)

Arguments

Argument Type Description

group short index of group.

signal short signal number
Result

Result Type Description

ok boolean True if data container could be deleted.
Remarks

The DataDeleteByPos() method deletes a data container with specified group index

and signal number.
If the data container does not exists Fal se is returned.

Example

Del ete current data container
Set obj Data = obj Doc. Dat aGet Acti ve()
I f obj App.|sObj (obj Data) Then

ok = obj Doc. Dat aDel et eByPos(obj Dat a. Get Gr oupPos, obj Dat a. Get Si gnal Pos)
End If

See also

Class Data, DataDeleteByName Method, DataDeleteGroup Method, DataDeleteAll
Method

©2022 by Nanosurf, all rights reserved

Object Reference 169

7.6.2.11 Document::DataDeleteGroup

Deletes a group of data containers.
Syntax

ok = objDoc.DataDelete Group(group)
Arguments

Argument Type Description

group short index of group.

Result

Result Type Description

ok boolean True if group could be deleted.

Remarks

The DataDeleteGroup() method deletes all data containers within a specified group
and the group itself.
If the group with groupindex does not exists Fal se is returned.

Example

Del et e backward spectroscopy
ok = obj Doc. Dat aDel et eGr oup(obj Doc. Get G- oupPos(" Specroscopy Backward"))

See also

Class Data, DataDeleteByName Method, DataDeleteGroup Method, DataDeleteAll
Method

7.6.2.12 Document::DataGetActive

Returns a Data class object associated with the current active chart.

Syntax

©2022 by Nanosurf, all rights reserved

170 Script Programmers Manual

objData = objDoc.DataGetActive()
Arguments

none
Result

Result Type Description

objData Object Returns a IDispatch object to the data object which is displayed by the
active chart or an invalid object if no active chart is available.

Remarks

The DataGetActive() method returns a IDispatch object to the data container which is

displayed by the active chart. If no chart is selected an invalid object is returned. This
can be checked by objApp.IsObj().

Example

get access to the current data
Set obj Data = obj Doc. Dat aGet Acti ve()
I f Not obj App.|sObj (objData) Then
MsgBox "No chart sel ected"
End | f

See also

Class Data, Class Chart, Chart.Active Property

7.6.2.13 Document::DataGetByName
Returns a Data class object with specified name.
Syntax
objData = objDoc.DataGetByName(groupname, signalname)
Arguments

Argument Type Description

©2022 by Nanosurf, all rights reserved

Object Reference 171

group string name of group.

signal string name of signal
Result
Result Type Description

objData Object Returns a IDispatch object for the data object with given name. If no data
container is found an invalid object is returned.

Remarks

The DataGetByName() method returns a IDispatch object to the data container with
spec ivied names. If no container is found an invalid object is returned. This can be
checked by objApp.IsObj().

Example

get access to topography of forward scan
Set obj Data = obj Doc. Dat aGet ByName(" Spectroscopy Forward", "Defl ection")
I f Not obj App.|sObj (objData) Then

MsgBox "No | nage avail abl e"
End |f

See also

Class Data

7.6.2.14 Document::DataGetByPos

Returns a Data class object at the specified position.
Syntax

objData = objDoc.DataGetByPos(group, signal)
Arguments

Argument Type Description

group short index of group.
signal short number of signal in group
Result

©2022 by Nanosurf, all rights reserved

172 Script Programmers Manual

Result Type Description

objData Object Returns a IDispatch object for the data object at selected position or an
invalid object if no data object is at selected position.

Remarks

The DataGetByPos() method returns a IDispatch object to the data container at a
specified position. If position is out of range an invalid object is returned. This can be
checked by objApp.IsObj().

The group index is a zero based index number. The index have to be less than
DataGroupCount().

The signal number is a zero based number of the channel. The number of to be less
than DataChannelCount().

Example

get access to topography of forward scan
Set obj Data = obj Doc. Dat aGet ByPos(obj Doc. Get Gr oupPos(" Scan Forward"), 1)
I f Not obj App.|sObj (objData) Then

MsgBox "No | nage avail abl e"
End | f

See also

Class Data, DataGroupCount Method, DataSignalCount Method, DataGetGroupPos
Method

7.6.2.15 Document::DataGetGroupID

Gets the ID value of a group.
Syntax

id = objDoc.DataGetGrouplID(group)
Arguments

Argument Type Description

group short index of group.

Result

©2022 by Nanosurf, all rights reserved

Object Reference 173

Result Type Description

id short ID of group or -1 if group not found

Remarks

The DataGetGrouplID() method return the ID number of a group. If the group is not
defined a value of -1 is returned.

Example

del ete all phase channels of a spectroscopy in a docunent
SpeclD = 1
For g = 0 To obj Doc. Dat aGr oupCount ()-1
I f obj Doc. Get Groupl D(g) = Specl D Then
ok = obj Doc. Dat aDel et eByPos(g, obj Doc. Dat aGet Si ghal Pos(g, " Phase"))

End |If
Next
See also

Class Data, DataSetGrouplD Method

7.6.2.16 Document::DataGetGroupName

Returns the name of a group.
Syntax

groupname = objDoc.DataGetGroupName(group)
Arguments

Argument Type Description

group short index of group.
Result
Result Type Description

groupname string Name of group or ™ if not group index is out of range.

Remarks

©2022 by Nanosurf, all rights reserved

174 Script Programmers Manual

The DataGetGroupName() method returns the name of a group. If the group with the
given index is not defined an empty string is returned.

Example

Display a list of all groups
groupnanmes = ""

For i = 0 To obj Doc. Get GroupCount ()-1
groupnanmes = groupnanes & VbCRLF & obj Doc. Dat aGet Gr oupNane(i)
Next

MsgBox "Avail able Groups in Docunment:" & groupnanes

See also

Class Data, DataGroupCount Method

7.6.2.17 Document::DataGetGroupPos

Returns the group index of a specified group name.
Syntax

index = objDoc.DataGetGroupPos(groupname)
Arguments

Argument Type Description

groupname string name of group

Result

Result Type Description

index short index number of the group.

Remarks

The DataGetGroupPos() method returns the index number into the list of defined
groups for the group with specified name. If no group is found a value of -1 is returned.

To get a specific group it is recommended to get its index by this method because the
group index of a certain group can vary from document to document. (e.g: "Scan
Backward" group can have index 0 or 1 depending on the measurement mode during
imaging)

Example

search for topography of backward scan

©2022 by Nanosurf, all rights reserved

Object Reference

scanpos = obj Doc. Dat aGet Gr oupPos(" Scan Backward")
I f scanpos > 0 Then
Set obj Data = obj Doc. Dat aGet ByPos(scanpos, 1)

End |f

See also

Class Data, DataGetByPos Method

7.6.2.18 Document::DataGetSignalPos

Returns the signal number of a specified signal name.

Syntax

pos = objDoc.DataGetSignalPos(group, signalname)

Arguments

Argument Type
group short

signalnamestring

Result

Result Type

pos short

Remarks

The DataGetSignalPos() method returns the number of the signal with the given

Description
index of group.

name of signal

Description

position of the signal in the selected group.

name. If no signal is found a value of -1 is returned.

Example

search for tip current signal nunber
pos = obj Doc. Dat aGet Si gnal Pos(0,"Tip Current")

If pos < 0 Then

MsgBox "No tip current data avail abl e”

End |f

See also

Class Data

175

©2022 by Nanosurf, all rights reserved

176 Script Programmers Manual

7.6.2.19 Document::DataGroupCount

Retrieves the number of data groups in this document
Syntax
count = objDoc.DataGroupCount()
Arguments
none.
Result

Result Type Description

count short Returns the number of data groups

Remarks

The DataGroupCount method retrieves the number of data groups available in this
document. Returns zero if no group is defined.

The Data objects of synchronous measured signals are stored in a group. The groups
are sequentially numbered from zero t0 count-1.

Example
count = obj Doc. Dat aGr oupCount ()
See also

Class Data, DataCreate Method, DataGetByPos Method, DataDeleteByPos Method

7.6.2.20 Document::DataSetGroupID

Sets the ID value of a group.
Syntax
ok = objDoc.DataSetGrouplD(group, groupid)

Arguments

©2022 by Nanosurf, all rights reserved

Object Reference 177

Argument Type Description

group short index of group.

groupid short id number of group
Result

Result Type Description

ok boolean True if ID could be changed.
Remarks

The DataSetGrouplD() method set the ID number of group.

ID numbers a used to identify groups which contains data of the same style. (e.g Scan
Forward, and Scan Backward groups contains similar data, also Spectroscopy forward
and Spectroscopy Backward). The ID number of such groups can be set to an equal
number. The software or a script can then process data containers of a groups
together if desired.

The "Current Line" arrow of "Color Map" charts is using this feature to change the
current line of all signal channels in all groups with the same group id number if the
user drag the arrow up and down.

Each new created group by DataCreate() gets a new group id in the range 256 to
32767.

It is recommend to used ID number in the range from 128 to 255 for user defined ID
and overwrite only dynamically defined ID but not standard IDs set by the main
applications modules.

Predefined group IDs are in the range 0 to 127. The following are defined:

Group ID Description

0 Scan group ID. Data groups created by the imaging module.
1 Spectroscopy group ID. Data groups created by the spectroscopy module.
Example

Create two new data container of individual groups
and mark themwith the same user defined group ID
Set obj Dat aOne = obj Doc. Dat aCreat e(-1, - 1, Not hi ng)
Set obj DataTwo = obj Doc. Dat aCreate(-1, -1, Not hi ng)
I f obj App. | sObj (obj Dat aOne) Then
obj Doc. Dat aSet Gr oupl D(obj Dat aOne. Get Gr oupPos, 127)
End If
I f obj App. | sObj (obj Dat aTwo) Then
obj Doc. Dat aSet Gr oupl D(obj Dat aTwo. Get Gr oupPos, 127)

©2022 by Nanosurf, all rights reserved

178 Script Programmers Manual

End |f

See also

Class Data, DataCreate Method

7.6.2.21 Document::DataSetGroupName
Sets the name of a group.
Syntax

ok = objDoc.DataSetGroupName(group, groupname)

Arguments

Argument Type Description

group short index of group.

groupname string name of group
Result

Result Type Description

ok boolean True if name for specified group could be set
Remarks

The DataSetGroupName() method set the name of group.

Use this function to give a group created by DataCreate() a nice name. It is not
recommended to overwrite group names generated be the imaging or spectroscopy
modul.

Example

Create a new data container in a new group and nane the group
Set obj Data = obj Doc. Dat aCreate(-1, -1, Not hi ng)
I f obj App.|sObj (obj Data) Then

obj Doc. Dat aSet Gr oupName(obj Dat a. Get Gr oupPos, "My Anal ysi s")
End If

See also

©2022 by Nanosurf, all rights reserved

Object Reference 179

Class Data, DataCreate Method

7.6.2.22 Document::DataSignalCount

Retrieves the maximal number of signal channels stored in a group
Syntax
count = objDoc.DataSignalCount(group)

Arguments

Argument Type Description

group short position index for group of interest

Result

Result Type Description

count short Returns the number of signals in the specified group

Remarks

The DataSignalCount method retrieves the number of signal channels available in a
group. Returns zero if no channels are available.
The Data objects of synchronous measured signals are stored in the same group.

Not all of the available signal channels of a group have to be measured. If referenced
by DataGetByPos() an undefined Data object is returned if the position of the signal
channel is between zero and count-1 but contains no data.

Example

get the amount of real measured signal channels
count obj Doc. Dat aSi gnal Count (0)
measur ed 0
For pos = 0 To count-1
| f obj App. | sObj (obj Doc. Dat aGet ByPos(pos)) Then
measured = nmeasured + 1
End If
Next
MsgBox "Avail abl e signal channels: " & measured

See also

Class Data, DataGroupCount Method, DataCreate Method, DataGetByPos Method,
DataDeleteByPos Method

©2022 by Nanosurf, all rights reserved

180 Script Programmers Manual

7.6.2.23 Document::InfoCount

Retrieves the number of information sections of this document
Syntax
count = objDoc.InfoCount()
Arguments
none.
Result

Result Type Description

count short Returns the number of information sections

Remarks

The InfoCount method retrieves the number of information sections of this document.
Returns zero if no section is created.

Example
count = obj Doc. | nfoCount ()

See also

Class Info, InfoCreate Method, InfoGetByPos Method, InfoDeleteByPos Method

7.6.2.24 Document::InfoCreate

Creates a new information section and returns an Info object to it.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 181

objinfo = objDoc.InfoCreate(sectioname,pos,srcinfo)

Arguments
Argument Type Description
sectionna string The titel of the new section
me
pos short The position in the list of information section

srcinfo object The contents of the source info is copied if srcinfo is not Not hi ng

Result

Result Type Description
objinfo Object Returns an IDispatch object to the new information section or an invalid
object

Remarks

The InfoCreate method creates a new information section in the documents list of
informations.

The titel of the new section is provided with the argument sectionname.

The pos argument defines the initilal display position of the new section. A value of -1
palces the section to the end of the list.

If the argument srcinfo is not Not hi ng itS contents is copied.

Example

create a new enpty section
Set objInfo = objDoc.|nfoCreate("Analysis Results", 0, Not hi ng)

Copy the contents of the 'Scan' Section from one docunent to another
Set obj Srcinfo = obj SrcDoc. | nfoGetByName("Scan")
Set obj Destl nfo = obj Dest Doc. | nf oCreat e("Scan", 0, obj Srcl nf o)

See also

Class Info

©2022 by Nanosurf, all rights reserved

182 Script Programmers Manual

7.6.2.25 Document::InfoDeleteAll

Removes all information section of a document
Syntax
done = objDoc.InfoDeleteAll()
Arguments
None.
Result

Result Type Description

done Boolean Returns T1r ue if all section could be removed otherwise Fal se

Remarks
The InfoDelete All method removes all information section of the document.

Example

enpfty information section
ok = obj Doc. | nfoDel eteAll ()
I f obj Doc.InfoCount() > 0 Then

MsgBox "Error: Could not renove all information sections!"
End I f

See also

Class Info, InfoCount Method

7.6.2.26 Document::InfoDeleteByName

Deletes the info section with a specified name
Syntax

done = objDoc.InfoDeleteByName(name)
Arguments

Argument Type Description

name string Remove the information section from the document with this name

©2022 by Nanosurf, all rights reserved

Object Reference 183

Result

Result Type Description

done Boolean Returns True is section could be found and removed otherwise
Fal se

Remarks

The InfoDeleteByName method removes the information section with the title name.
The argument has to be a string. If the information section is found this method returns
Fal se.

Example

remove anal ysis section
Set oDoc = obj App. DocGet Acti ve()
I f obj App.1sObj (oDoc) Then

obj Doc. | nf oDel et eByNane(" Result")
End | f

See also

Class Info, Name Property

7.6.2.27 Document::InfoDeleteByPos

Deletes the n'th information section
Syntax
done = objDoc.InfoDeleteByPos(pos)
Arguments
Argument Type Description
pos short Removes the information section at specified position
Result
Result Type Description

done Boolean Returns Tr ue if the section could be deleted otherwise Fal se

Remarks

©2022 by Nanosurf, all rights reserved

184

Script Programmers Manual

The InfoDeleteByPos method deletes the information section with position pos.
The argument has to be positiv and lower than the value return by InfoCount().

Example

cl ose |l ast docunent
obj Doc. | nf oDel et eByPos(obj Doc. | nfoCount () - 1)

See also

Class Info, InfoCount Method

7.6.2.28 Document::InfoGetByName

Returns a Info class object with the specified name.
Syntax

objinfo = objDoc.InfoGetByName(name)
Arguments

Argument Type Description

name string Name of information section

Result

Result Type Description

objinfo Object Returns a IDispatch object to the information section with the specified
name or an invalid object if no section is not found

Remarks

The InfoGetByName method returns a IDispatch object to the information section with
the specified name in the argument.

If no section with name is found a invalid object is returned. This can be checked by
objApp.IsObj().

The name of a section is its title displayed in the Data Info Panel.

Example

Set objInfo = obj Doc. | nfoGet ByNanme(" Scan")
I f Not obj App.|sObj (objDoc) Then
MsgBox "No Section called 'Scan' found"

©2022 by Nanosurf, all rights reserved

Object Reference 185

End |If
See also

Class Info

7.6.2.29 Document::InfoGetByPos

Returns a Info class object at the specified position.
Syntax

objinfo = objDoc.InfoGetByPos(pos)
Arguments

Argument Type Description

pos short Section position number.

Result

Result Type Description

objinfo Object Returns a IDispatch object for the info section at position pos or an invalid
object if pos >= InfoCount()

Remarks

The InfoGetByPos method returns a IDispatch object to the information section at a
specified position. If position is out of range an invalid object is returned. This can be
checked by objApp.IsObj().

The position is the index into an list which keeps track of all information section of a
document. It represents the n'th section as shown in the Data Info Panel.

Example

Set obj I nfo = obj Doc. | nfoGet ByPos(0)
I f obj App.|sObj (objlInfo) Then

MsgBox "First section is =" & objlnfo.Nanme
End I f

See also

Class Info, InfoCount Method, InfoGetByName Method

©2022 by Nanosurf, all rights reserved

186 Script Programmers Manual

7.6.2.30 Document::Load

Loads the contents of an nid-File into the document.
Syntax

ok = objDoc.Load(filename)
Arguments

Argument Type Description

flename string Filename of a document or an empty string (**) to open a file open
dialog

Result

Result Type Description

ok Boolean Returns T1r ue if successful

Remarks

The Load method loads the file with the path in filename. If filename is an empty string
a file open dialog is displayed.

If the user click abort or the file could not be loaded the method return Fal se.
Example

I f obj Doc.Load("") Then
MsgBox "File" & objDoc.Name & "is |oaded"
End I f

See also

Name Property, Save Method

©2022 by Nanosurf, all rights reserved

Object Reference 187

7.6.2.31 Document::Save

Save the document content to an nid-File.
Syntax

ok = objDoc.Save(filename)
Arguments

Argument Type Description

filename string Filename of a document or an empty string (") to open a file save
dialog

Result

Result Type Description

ok Boolean Returns Tr ue if successful

Remarks

The Save method stores document object to a filename. If filename is an empty string
a file save dialog is displayed.

If the user click abort or the file could not be saved the method return Fal se.

Example

I f obj Doc. Save(" MyDocumnent . ni d") Then
MsgBox "Docunent saved to " & obj Doc. Nane
End If

See also

Name Property, Load Method

7.6.2.32 Document::ShowWindow

Defines the display style of the document window.

Syntax

©2022 by Nanosurf, all rights reserved

188

Script Programmers Manual

objDoc.ShowWindow(style)

Arguments

Argument Type

style short

Result
None.

Remarks

Description

Visibility style number

The ShowWindow method sets the visibility state of the window. Use one of the

following values:

Name Value|Description

SW_HIDE 0 |Hides this window and passes activation to another window

SW_NORMAL 1 |Activates and displays the window. If the window is minimized
or maximized, Windows restores it to its original size and
position

SW_MINIMIZED 2 |Activates the window and displays it as an icon

SW_MAXMIZED 3 |Activates the window and displays it as a maximized window

SW_SHOWNOAC| 4 |Displays the window in its most recent size and position. The

TIVE window that is currently active remains active

SW_ACTIVATE 5 |Activates the window and displays it in its current size and
position

SW_MINIMIZE 6 |Minimizes the window and activates the top-level window in thej
system's list.

SW_MINNOACTIV| 7 |Displays the window as an icon. The window that is currently

E active remains active

SW_SHOWNA 8 |Displays the window in its current state. The window that is
currently active remains active

SW_RESTORE | 9 |Activates and displays the window. If the window is minimized

or maximized, Windows restores it to its original size and
position

©2022 by Nanosurf, all rights reserved

Object Reference 189

Example

obj Doc. ShowwW ndow(3)

See also

None.

7.7 Info

maxi m ze and activate this docunent

The Info class is a container which stores a set of values along the measured data in a
document. These information are displayed in the Datalnfo Panel.

A document can store multiple Info classes in a list. To identify individual members each
instant has a name and a position in the list.

The values in a Info class are stored as name and value pairs. To reference a value one
can use its name or position in the container. The position in the container also defines the
display order in the Datalnfo Panel.

The application is using these Info classes to store measurement parameters like
Feedback settings or scan head calibration information. Predefined Info class names are

the following:

Section names Purpose

Global Version numbers and calibration information

Feedback Z-Feedback controller parameters like set point

Scan Contains scan parameters like scan speed

Spec Spectroscopy parameters

Tool Active Tools result

Result Results of operation point adjustment in dynamic force mode
Modules Information about installed Modules

The user is free to define new Info sections for their own purpose (e.g: Store analysis
results of a script function or sample preparation information)

Table of properties for Info class:

Property name

Purpose

©2022 by Nanosurf, all rights reserved

190

Script Programmers Manual

7.7.1

7.7.1.1

Name

Contains name or title of the information section

Pos

Position in the list of info class of the document

Table of methods for general usage of Document class:

Method name

Purpose

GetDocument Returns the IDispatch class of the parent document
Count Returns the number of values stored in this class
SetByName Set a value with a specified name

GetByName Get a value with a specified name

SetByPos Set a value with a specified position

GetByPos Get a value with a specified position
GetNameByPos Get the name of a value at a specified position

DeleteByName

Delete a value with a specified name

DeleteByPos

Delete a value with a specified position

DeleteAll

Deletes all name value pairs

Properties

Info::Name

Returns or sets the name of the info section.
Syntax

objinfo.Name [= name]
Setting

Argument Type Description

name String name is a string containing the new name of the section

Remarks
The Name property is containing the name of the info section. It is unique or one
document.
It is displayed in the Data Info Panel as a title on to of the values.

The name of a newly created info class is assigned by the objDoc.InfoCreate()

©2022 by Nanosurf, all rights reserved

Object Reference 191

method.

Example

Di mobjInfo : Set objlInfo = objDoc.|nfoCreate("Test", Nothing)
MsgBox "Name is " & objlnfo.Nanme

See also

Doc.InfoCreate, Pos Property

7.7.1.2 Info::Pos

Returns or sets the position of the info section in the document.
Syntax

objinfo.Pos [= pos]
Setting

Argument Type Description

pos short pos defines the position of the section in the list of a document

Remarks

Info class instances are stored in the parent document in a list. The Pos property is
containing the list position of a info section. Info sections are displayed in the Data Info
Panel in their list position starting by position zero.

If the value -1 is assigned to the Pos property the info class is placed at the end of the
list and the Pos property value is set accordingly.

Example

move a info section to the end
objInfo.Pos = -1
See also

Doc.InfoCreate

©2022 by Nanosurf, all rights reserved

192 Script Programmers Manual

7.7.2 Methods

7.7.2.1 Info::Count

Retrieves the number of values stored in this section
Syntax
count = objinfo.Count()
Arguments
none.
Result

Result Type Description

count short Returns the number of stored values

Remarks

The Count() method retrieves the number of values currently defined and displayed for
this information section. Returns zero if no values are defined.

Example
count = objInfo. Count ()

See also

Class Info, SetByName Method, SetByPos Method

7.7.2.2 Info::DeleteAll

Deletes all information of a section.
Syntax
ok = objinfo.DeleteAll()
Arguments
none.

Result

©2022 by Nanosurf, all rights reserved

Object Reference

193

Result Type Description
ok boolean True if all infformation could be deleted
Remarks
The DeleteAll() method deletes all information entries of the info section.

Example

del ete all
ok = objlInfo.DeleteAll()

See also

Class Info, DeleteByName Method, DeleteByPos Method

7.7.2.3 Info::DeleteByName

Deletes the information with a given name.
Syntax

ok = objinfo.DeleteByName(name)
Arguments

Argument Type Description

name string Name of the information to be deleted

Result

Result Type Description

ok boolean True if value for specified name could be deleted

Remarks

The DeleteByName() method deletes a information entry defined by its name.
The method searchs for the information in a none case sensitive manner.

Example

del ete an value fromthe roughness analysis result
Set objInfo = objDoc.|nfoGet ByName("Area Roughness")

©2022 by Nanosurf, all rights reserved

194

Script Programmers Manual

7.7.2.4

I f obj App.1sObj (objlInfo) Then
obj I nf 0. Del et eByName " Sni'
End If

See also

Class Info, DeleteByPos Method, DeleteAll Method

Info::DeleteByPos

Deletes the information at a given position.
Syntax
ok = objinfo.DeleteByPos(pos)
Arguments
Argument Type Description
pos short Position of the information to be deleted
Result
Result Type Description
ok boolean True if value for specified position could be deleted
Remarks
The DeleteByPos() method deletes an information entry defined by its position.

Example

delete first entry in a info section
ok = obj I nfo. Del et eByPos(0)

See also

Class Info, DeleteByName Method, DeleteAll Method

©2022 by Nanosurf, all rights reserved

Object Reference 195

7.7.2.5 Info::GetByName

Returns the value of a information with a given name.
Syntax

value = objinfo.GetByName(name)
Arguments

Argument Type Description

name string Name of the value
Result
Result Type Description
value string Stored value for the named argument or an empty string if not
found
Remarks

The GetByName() method retrieves a value for a specified information defined by its
name.

The name is not case sensitive. If no information is found an empty string is returned

Example

Create a new info section and store some val ue
Set objlInfo = objDoc.|nfoGetByName("Scan")
I f obj App.1sObj (objlInfo) Then

MsgBox "Used scan speed was = " & objlnfo. GetByNanme "Ti ne/Line"
End If

See also

Class Info, GetByPos Method

©2022 by Nanosurf, all rights reserved

196

Script Programmers Manual

7.7.2.6

Info::GetByPos

Returns the value of a information at a given position.
Syntax

value = objinfo.GetByPos(pos)
Arguments

Argument Type Description

pos short position of the value
Result
Result Type Description
value string Stored value at the specified position by pos. Is an empty string if

position is out of range.

Remarks

The GetByPos() method retrieves a value for a specified information defined by its
position.

If no information is found an empty string is returned

Example

list all information for section "Scan"
Set objlInfo = objDoc.|nfoGetByName("Scan")
I f obj App.1sObj (objlInfo) Then

For i = 0 To objInfo.Count() - 1
MsgBox obj I nfo. Get NameByPos(i) & " = " & objInfo. GetByPos(i)
Next
End | f
See also

Class Info, GetByName Method

©2022 by Nanosurf, all rights reserved

Object Reference 197

7.7.2.7 Info::GetDocument

Returns a IDispatch object to the parent Document class.
Syntax
objDoc = objinfo.GetDocument()
Arguments
none.
Result

Result Type Description

objDoc ~ Object A IDispatch object to the parent document class

Remarks

The GetDocument() method returns a IDispatch object to the Document class where
this class is stored.

Example
Set obj Doc = obj | nfo. Get Document ()
if obj App.IsObj (obj Doc) then

MsgBox "objlInfo is stored in : " & objDoc. Nanme
end if

See also

Class Info, Class Document

7.7.2.8 Info::GetNameByPos

Returns the name of a information at a given position.
Syntax

name = objinfo.GetNameByPos(pos)
Arguments

Argument Type Description

pos short position of the value

©2022 by Nanosurf, all rights reserved

198 Script Programmers Manual

Result

Result Type Description

name string Name of value at the specified position by pos. Is an empty string if
position is out of range.

Remarks

The GetNameByPos() method retrieves the name for a specified information defined
by its position.

If no information is found an empty string is returned
Example

list all information for section "Scan"
Set objlInfo = objDoc. | nfoGet ByName(" Scan")
I f obj App.1sObj (objInfo) Then

For i = 0 To objlInfo.Count() - 1
MsgBox obj I nfo. Get NameByPos(i) & " = " & objInfo. GetByPos(i)
Next
End | f
See also
Class Info

7.7.2.9 Info::SetByName

Sets the value of a information with a given name.

Syntax

ok = objinfo.SetByName (name, value)

Arguments
Argument Type Description
name string Name of the value
value string New value to be set

©2022 by Nanosurf, all rights reserved

Object Reference 199

Result

Result Type Description

ok boolean True if value for specified name could be set

Remarks

The SetByName() method sets a new value for a specified information defined by its
name

If the name is not already defined a new entry in the list of information is created at the
end of the list. The name is not case sensitive but stored as it is defined.

Example

Create a new info section and store sone val ue
Set objInfo = objDoc.|nfoCreate("My Analysis", -1, Not hing)
I f obj App.1sObj (objInfo) Then

obj I nf 0. Set ByNane "Al go", " Super Cal c"

obj I nfo. Set ByNane "Result", 1.2234
End | f

See also

Class Info, GetByName Method, SetByPos Method

7.7.2.10 Info::SetByPos

Sets the value of a information at a given position
Syntax

ok = objinfo.SetByPos(pos, value)
Arguments

Argument Type Description

pos short position of the value

value string New value to be set
Result

Result Type Description

©2022 by Nanosurf, all rights reserved

200 Script Programmers Manual

ok boolean True if value at specified position could be set

Remarks

The SetByPos() method sets a new value for a specified information defined by its
position. The position has to be positiv and lower than the value returned by Count()
otherwith the method return Fal se.

It is recommended to use this function only to overwrite values predefined by
SetByName().

Example

Create a new info section and store sone val ue
Set objInfo = objDoc.|nfoCreate("M Analysis", -1, Nothing)
I f obj App.1sObj (objlInfo) Then

obj I nfo. Set ByNane " Al go", " Super Cal c"

obj I nfo. Set ByNane "Result", 0

overwrite Result value (pos = 1)
obj I nfo. Set ByPos(1, 3. 1415)
End I f

See also

Class Info, GetByPos Method, SetByName Method

7.8 Litho

The Litho class handles the microscope's lithography subsystem.

A object pointer to this class is provided by the Application.Litho object property.

A lithography session is assembled offline by adding commands to the command list.
Call Start to start the session after completing the command list. Before assembling a
new lithography session the ClearCmdList method must be called.

Table of properties for Litho class:

Property name Purpose
OperationMode Set the lithography operating mode
PenUpMode Set the PenUp mode

©2022 by Nanosurf, all rights reserved

Object Reference 201

7.8.1

7.8.1.1

Table of methods for general usage of Document class:

Method name

Purpose

Start Start a lithography sequence

Stop Stop an ongoing lithography sequence

IsMoving Retrieve the information whether a lithography Cmd is in process or
not

IsWorking Retrieve the information whether a lithography is in process or not

ClearCmdList Clear the command list

AddCmd_ MoweTip

Add a MoveTip command to the CmdList

AddCmd_Wait

Add a Wait command to the CmdList

AddCmd SetPoint

Add a SetPoint command to the CmdList

AddCmd TipVoltage

Add a TipVoltage command to the CmdList

AddCmd_VibratingAmpl

Add a VibratingAmpl command to the CmdList

AddCmd PenUp

Add a PenUp command to the CmdList

AddCmd PenDown

Add a PenDown command to the CmdList

StartCapture

Prepare a image capture if scanning or do it immediately

StopCapture

Clear a prepared image capture

IsCapturing

Retrieve the information whether a capture is prepared or not

StartFrameUp

Start a single scan frame direction upward

StopFrameUp

Stop a single scan frame

IsScanning

Retrieve the information whether a scanning is in process or not

Properties

Litho::OperatingMode

Get or set the lithography operating mode.

Syntax

litho.OperatingMode [= mode]

Argument

ParameteType
r

mode LONG

Description

Defines the operating mode for lithography. See modes in the table below.

©2022 by Nanosurf, all rights reserved

202

Script Programmers Manual

7.8.1.2

Remarks

In order to do lithography you may select one of the following operating modes.

Table of lithography operation mode values and description:

State No. |Name Description

0 LithoOpMode_User Undefined

1 LithoOpMode_STM For STM scan heads use this index

2 LithoOpMode_StaticAFM |AFM only: Static deflection mode

3 LithoOpMode_DynamicAFM[AFM only: Dynamic force mode
See also

None

Litho::InactivePenMode
Get or set the inactive pen mode.

Syntax

litho.InactivePenMode [= mode]

Argument

ParameteType Description

r

mode

Remarks

LONG

Defines the inactive pen mode. See modes in the table below.

Scan lines can be measured differently. This property defines this.

Table of inactive pen mode values and description:

State No. |Name Description
0 InactivePenMode_LiftTip Lift tip while moving to the next start position.
1 InactivePenMode_ChangeO [Change back to the scan operating mode while moving
pMode to the next start position.
See also
None

©2022 by Nanosurf, all rights reserved

Object Reference 203

7.8.2 Methods
7.8.2.1 Litho::AddCmd_MoveTip
Move the tip from the current position to a destination coordinate.

Syntax
litho.AddCmd_MoveTip(x,y,z)
Argument

ParameteType Description
r

X double X-Axis component of the destination position. Unit in meter [m]

y double Y-Axis component of the destination position. Unit in meter [m]

z double Z-Axis component of the destination position. Unit in meter [m]
Remarks

This method adds a MoveTip command to the command list. The coordinate system of
the destination position is the scanner coordinate system. l.e. the position (0,0,0) is the
center position of the scanner.

Example

nove tip to x=10e-6m y=10e-6m z=0m
obj Li t ho. AddCnd_MoveTi p 10e-6, 10e-6, O
nove tip to x=15e-6m y=20e-6m z=0m
obj Li t ho. AddCnd_MoveTi p 15e-6, 20e-6, O

See also
Method ClearCmdList

7.8.2.2 Litho::AddCmd_PenDown
Add a PenDown command to the command list.

Syntax
litho.AddCmd_PenDown

Remarks

This method adds a PenDown command to the command list. The PenDown command
switches from the InactivePenMode to the lithography mode.

Example

pen down
obj Li t ho. AddCrd_PenDown

See also

Method ClearCmdlList
Property InactivePenMode

©2022 by Nanosurf, all rights reserved

204 Script Programmers Manual

7.8.2.3 Litho::AddCmd_PenUp
Add a PenUp command to the command list.

Syntax
litho.AddCmd_PenUp

Remarks

This method adds a PenUp command to the command list. The PenUp command
switches to the InactivePenMode. Use this command to start moving from one position
to another without performing lithography.

Example

pen up
obj Li t ho. AddCnd_PenUp

See also

Method ClearCmdList
Property InactivePenMode

7.8.2.4 Litho::AddCmd_SetPoint
Add a SetPoint command to the command list.

Syntax
litho.AddCmd_SetPoint(setpoint)

Argument

ParameteType Description
r

setpoint double Defines the reference value for the sensor signal from the scan head.

Remarks

This method adds a SetPoint command to the command list. This command changes
the Set point that is used in lithography mode.

The unit depends on the operating mode selected by property Litho.OperatingMode.

Op. mode Input Signal |Unit
ST™M Tunneling Ampere
Current
Static AFM Deflection Newton
Dynamic AFM Amplitude Percentage of resonance peak [0 .. 100%]
Example

set setpoint 10uN (static AFM

©2022 by Nanosurf, all rights reserved

Object Reference 205

obj Li t ho. AddCnd_Set Poi nt 10e-6 ' N
See also
Method ClearCmdList

7.8.2.5 Litho::AddCmd_TipSpeed
Add a TipSpeed command to the command list.

Syntax
litho.AddCmd_TipSpeed(speed)

Argument
ParameteType Description
r
speed double Tip speed. Unit in meter/second [m/s]

Remarks

This method adds a TipSpeed command to the command list. This command changes
the Tip speed that is used in lithography mode.

Example

obj Li t ho. AddCnd_Ti pSpeed 4.0e-6 ' m's
See also

Method ClearCmdList

7.8.2.6 Litho::AddCmd_TipVoltage
Add a TipVoltage command to the command list.

Syntax
litho.AddCmd_TipVoltage(voltage)

Argument

ParameteType Description
r

wltage double Defines the potential applied to the tip in wltage.

Valid range from -10V to +10V.

Remarks

This method adds a TipVoltage command to the command list. This command changes
the Tip voltage that is used in lithography mode.

Example
obj Li t ho. AddCmd_Ti pVoltage 1.0 ' V

©2022 by Nanosurf, all rights reserved

206 Script Programmers Manual

See also
Method ClearCmdList

7.8.2.7 Litho::AddCmd_VibratingAmpl
Add a VibratingAmpl command to the command list.

Syntax
litho.AddCmd_VibratingAmpl(voltage)

Argument
ParameteType Description
r
woltage double Defines the free vibrating amplitude in [V].

Remarks

This method adds a VibratingAmpl command to the command list. This command
changes the free vibration amplitude that is used in lithography mode.

This command is only affective if the operating mode "Dynamic force" is used.

Example
obj Li t ho. AddCnd_Vi brati ngAnpl 1.0 ' V

See also
Method ClearCmdList

7.8.2.8 Litho::AddCmd_Wait
Add a Wait command to the command list.

Syntax
litho.AddCmd_Wait(time)

Argument

ParameteType Description
;

time double Defines the wait time in seconds.

Remarks
This method adds a Wait command to the command list.

Example
obj Li tho. AddCmd_Wait 2.0 ' s

©2022 by Nanosurf, all rights reserved

Object Reference 207

See also
Method ClearCmdList

7.8.2.9 Litho::ClearCmdList
Clear the command list.

Syntax
litho.ClearCmdList

Remarks
This method clears the command list.

Use this method before creating a new command list.

7.8.2.10 Litho::IsCapturing
Returns if a capture is pending or not.

Syntax
result = litho.IsCapturing

Result
ParameteType Description
r

result Boolean Returns True if a capture is pending

Remarks
This method is returning True if a capture is pending.

Example

I f objLitho.lIsCapturing Then
obj Li t ho. St opCapt ure
End If

See also
Method StartCapture, StopCapture

7.8.2.11 Litho::IsMoving
Returns if a tip move is pending or not.

Syntax
result = litho.IsMoving

©2022 by Nanosurf, all rights reserved

208

Script Programmers Manual

7.8.2.12

Result
ParameteType Description
r

result Boolean Returns True if the tip is moving

Remarks
This method is returning True if a tip move is pending.

Example

I f objLitho.lsMyving Then
obj Li t ho. St op
End If

See also
Method Start, Stop

Litho::IsScanning
Returns if a scan is in process or not.

Syntax
result = litho.IsScanning
Result

ParameteType Description
r

result Boolean Returns True if imaging is in process

Remarks

This method is returning True if a scan is currently running.

Example

measure i mage
obj Litho. Start FrameUp
Do Wil e objLitho.lsScanning : Loop

copy i mage date
obj Litho. Start Capture
See also
Method StartFrameUp

©2022 by Nanosurf, all rights reserved

Object Reference 209

7.8.2.13 Litho::IsWorking
Returns if a lithography session is pending or not.

Syntax
result = litho.IsWorking

Result
ParameteType Description
r

result Boolean Returns True if a lithography session is pending

Remarks
This method is returning True if a lithography session is pending.

Example

I f objLitho.lsWrking Then
obj Li t ho. St op
End If

See also
Method Start, Stop

7.8.2.14 Litho::Start
Start the lithography session.

Syntax
litho.Start

Remarks
This method is starting the lithography session. The lithography session ends when the
last command has been executed.

The lithography session may be stopped at any time using the method Stop.

Example

prepare litho
obj Li t ho. Cl ear CndLi st
obj Li ht o. AddCnd_Ti pSpeed 10. Oe- 6
obj Li t ho. AddCnd_MoveTip 1.0, 1.0, 0.0

start litho
obj Litho. Start

do something else ...

finish i mediately
obj Li t ho. St op

©2022 by Nanosurf, all rights reserved

210 Script Programmers Manual

See also
Method Stop

7.8.2.15 Litho::StartCapture
Create a new image document.

Syntax
litho.StartCapture

Remarks

This method copies the measured data to a new image document. If a scanning
process is running at the time StartCapture is called a new image document is created
each time a frame is measured.

A pending capture can be canceled with StopCapture. If a capture is pending read
method IsCapturing.

Example
start imaging
obj Litho. Start FrameUp

prepare i mage copy
obj Li t ho. St art Capture

wait until copy is taken at end of franme
Do Wil e objLitho.lsCapturing : Loop
See also

Method StopCapture, IsCapturing
Method Application.SaveDocument

7.8.2.16 Litho::StartFrameUp
Starts a single up frame image.

Syntax
litho.StartFrameUp

Remarks

This method is starting a single image starting from the bottom to the top. During the
scan process IsScanning is True and if StartCapturing is called during the frame a new
document is created after the scan frame is finished. At the end the tip is moved to the
center of the image.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning.

Prior to be able to scan a z-approach should be performed successfully.

©2022 by Nanosurf, all rights reserved

Object Reference 211

Example

prepare scan
obj Scan. | mnageSi ze 2e-6, 2e-6
obj Scan. Scantime = 0.7

measure i mage
obj Litho. Start FrameUp
Do Wil e objLitho.lsScanning : Loop

copy i mage date
obj Litho. Start Capture

See also
Method IsScanning

7.8.2.17 Litho::Stop
Stop the lithography session.

Syntax
litho.Stop

Remarks

This method stops an ongoing lithography session immediately. The current executed
command will be aborted.

A possible pending capture flag is also aborted and no document is created.

Example

start litho
obj Litho. Start

do something else ...

finish imedately
obj Li tho. St op

See also
Method Start

7.8.2.18 Litho::StopCapture
Cancel a pending capture

Syntax
litho.StopCapture

Remarks
This method cancel a pending capture. If a capture is pending read method IsCapturing.

Example

start inmaging

©2022 by Nanosurf, all rights reserved

212

Script Programmers Manual

7.8.2.19

7.9

obj Scan. Start FraneUp

prepare i mage copy
obj Scan. St art Capture

do somet hi ng

I f obj Scan.|sCapturing Then
obj Scan. St opCapt ure
End If

See also
Method StartCapture, IsCapturing

Litho::StopFrameUp
Stops imaging immediately.

Syntax
litho.StopFrameUp

Remarks
This method stops any scan process immediately after the current scan line is finished.
The tip is moved to the center of the image.

A possible pending capture flag is also aborted and no document is created.

Example

start scan
obj Litho. Start FrameUp

do something else ...

" finish imrediately
obj Li t ho. St opFrameUp
See also

Method StartFrameUp

OperatingMode

The OperatingMode class is responsible for all the different operation modes of a SPM
electronics.

For AFM many different operating modes are usable. They differ on how the cantilever
deflection signal is preprocessed and interpreted. Switching between modes is as easy
as write to the property OperatingMode.

Also different type of cantilevers can be used with different mechanical properties as
stiffness or resonance frequency. The property Cantilever handles the details about
them and adjust the internal microscope electronics accordingly.

Most of the mode dependent properties are automatically set. But if desired the Auto...

©2022 by Nanosurf, all rights reserved

Object Reference 213

properties can be set to False and with mode specific properties manual settings can be
defined. Of course a read to any of these properties returns the automatically or manual
set values.

A object pointer to this class is provided by the Application.OperatingMode object property.

Table of general properties for OperatingMode class:

Property name

Purpose

OperatingMode

Defines the active operating mode of the sensor

Cantilever

Defines the type of the mounted cantilever

Measurement Environment

Defines the type of environment for the measurement

FreqaSweepSetinfoCount

Returns the number of available frequency sweep buffers

FreqSweepStart

Returns the start frequency of a specified buffer index

FreqSweepEnd

Returns the end frequency of a specified buffer index

FreqSweepStep

Returns the step frequency of a specified buffer index

Table of general methods for OperatingMode class:

Method name

Purpose

GetFregSweeplLine /

GetFreqSweeplLine2

Retrieve the data of a freq. sweep line. Returns value as String or
\ariant

GetFreqSweepLineEx /

GetFreqSweepLine2Ex

Retrieve the data of a freq. sweep line of a specified buffer index.
Returns value as String or Variant

Table of "Dynamic force"-Mode properties and methods:

Property name Purpose
VibratingAmpl Defines the amplitude of the cantilever vibration
ReferenceAmpl Returns the excitation amplitude used to reach the vibration amplitude

VibratingFreq

Defines the excitation frequency of the cantilever

AutoVibratingFreq

Enable automatically adjustment of excitation frequency

ShowFreqSearchChart

Shows or hides the result of excitation frequency search

Method name

SearchVibratingFreq

Triggers the excitation frequency search manually

IsFreqgSearchRunning

Flags if a frequency search is active

©2022 by Nanosurf, all rights reserved

214

Script Programmers Manual

FregSearchResult

Returns the status of the frequency search

CaptureFregSearchChart

Create a image document of the frequency search bode plot chart

Table of "Phase Contrast"-Mode properties and methods:

Property name

Purpose

VibratingAmpl

Defines the amplitude of the cantilever vibration

VibratingFreq

Defines the excitation frequency of the cantilever

AutoVibratingFreq

Enable automatically adjustment of excitation frequency

ReferencePhase Defines the phase reference for the phase chart
AutoReferencePhase Enable automatically adjustment of the reference phase
ShowFreqSearchChart Shows or hides the result of excitation frequency search

Method name

SearchVibratingFreq

Triggers the excitation frequency search manually

IsFregSearchRunning

Flags if a frequency search is active

FregSearchResult

Returns the status of the frequency search

CaptureFregSearchChart

Create a image document of the frequency search bode plot chart

SearchReferencePhase

Triggers the reference phase search manually

IsPhaseSearchRunning

Flags if a reference phase search is active

Table of "Force Modulation"-Mode properties and methods:

Property name

Purpose

ForceModAmpl Defines the amplitude of the cantilever excitation
ForceModFreq Defines the frequency of the cantilever excitation

Method name

SearchVibratingFreq

Triggers the excitation frequency search manually

IsFregSearchRunning

Flags if a frequency search is active

FregSearchResult

Returns the status of the frequency search

CaptureFreqSearchChart

Create a image document of the frequency search bode plot chart

Table of advanced properties for "Dynamic force ",

Modulation"-Mode:

non

Phase Contrast" and "Force

©2022 by Nanosurf, all rights reserved

Object Reference 215

Property name Purpose

FregSearchStart Defines the lower frequency of the \ibrating frequency search range
FregSearchEnd Defines the upper frequency of the vibrating frequency search range
FregSearchStep Defines the step resolution of the vibrating frequency search
AutoFregSearchRange Flags if the frequency search area is automatically set
PeakAmplReduction Defines the shift of operating frequency point from peak maximum
PeakUpperSideBand Flags if the shift is to the upper or lower side of the peak

7.9.1 Properties
7.9.1.1 OperatingMode::AutoFreqSearchRange
Returns or set a flag to define if automatic search range calculation is active or not.
Syntax
opmode.AutoFreqSearchRange [= flag]
Setting

Argument Type Description

flag Boolean Set to Tr ue if automatic calculation of start, end and step frequency
values is enabled.

Remarks

This property defines if the software is calculation the frequency search rage
automatically or not. If in auto mode the frequency range is calculated from the active
cantilever's typical resonance value. Therefore accurate cantilever selection with
property Cantilever and it definition is important.

The settings of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation”.

The resonance peak search can be executed manually by method
SearchVibratingFreq.

Example
execute approach with fully automatically adjustnment

activate auto nodes and Phase Contrast Mode

©2022 by Nanosurf, all rights reserved

216 Script Programmers Manual

obj OpMode. Aut oFr eqSear chRange = True
obj OpMode. Aut oVi br ati ngFr eq = True
obj OpMode. Aut oRef er encePhase = True
obj OpMode. Operti nghbde = 4

obj OpMode. Canti |l ever =2

obj OpMode. Vi brati ngAnpl = 0.05 'V
obj ZCtrl . Set Poi nt =50 "%

obj Appr. St art Approach
See also

Property OperatingMode, FreqSearchStart, FreqSearchEnd, FreqSearchStep
Method SearchVibratingFreq

7.9.1.2 OperatingMode::AutoReferencePhase

Returns or set a flag to define if automatic reference phase calibration is active or not.
Syntax

opmode.AutoRefeencePhase [= flag]
Setting

Argument Type Description

flag Boolean Set to Tr ue if automatic recalibration of reference phase is enabled.

Remarks
This property defines if the property ReferencePhase is set automatically or not. If in
auto mode after an approach a recalibration of the phase measurement is executed
and the reference phase is set to the new value.
The setting of this property is used in the operating mode "Phase Contrast".

The calibration of the reference phase can also be started manually by method
SearchReferencePhase.

Example

see exanple at nethod SearchRef erencePhase

See also

Property OperatingMode, ReferencePhase
Method SearchVibratingFreq

©2022 by Nanosurf, all rights reserved

Object Reference 217

7.9.1.3

OperatingMode::AutoVibratingFreq

Returns or set a flag to define if automatic resonance frequency detection is active or
not.

Syntax
opmode.AutoVibratingFreq [= flag]
Setting

Argument Type Description

flag Boolean Set to Tr ue if automatic set of excitation frequency is enabled.

Remarks

This property defines if the property VibratingFreq is set automatically or not. If in auto
mode prior to an approach, operating mode change or cantilever exchange a
resonance frequency search is executed and the vibration frequency is set to the found

peak.

The settings of this property is used in the operating modes "Dynamic force" and
"Phase Contrast".

The resonance peak search can also be executed manually by method
SearchVibratingFreq.

Example

see exanple at nethod SearchVi bratingFreq

See also

Property OperatingMode, VibratingFreq
Method SearchVibratingFreq

7.9.1.4 OperatingMode::ForceModAmpl

Returns or set the excitation amplitude.
Syntax

opmode.ForceModAmpl [= ampl]

©2022 by Nanosurf, all rights reserved

218 Script Programmers Manual

Setting

Argument Type Description

ampl double Defines the excitation amplitude of the cantilever in [V].

Remarks

This property sets the amplitude of the excitation signal of the cantilever. The excitation
frequency is defined by ForceModFreq.

The setting of this property is used in the operating mode "Force Modulation”.
See also

Property OperatingMode, ForceModFreq

7.9.1.5 OperatingMode::ForceModFreq

Returns or set the excitation frequency.
Syntax

opmode.ForceModFreq [= freq]
Setting

Argument Type Description

freq double Defines the excitation frequency of the cantilever in [Hz].

Remarks

This property sets the frequency of the excitation signal of the cantilever. The excitation
amplitude is defined by ForceModAmpl.

The setting of this property is used in the operating mode "Force Modulation".
See also

Property OperatingMode, ForceModAmpl

©2022 by Nanosurf, all rights reserved

Object Reference 219

7.9.1.6 OperatingMode::FreqSearchEnd

Returns or set the end frequency of the frequency peak search range.
Syntax

opmode.FreqSearchEnd [= freq]
Setting

Argument Type Description

freq double Defines the end frequency of the search range in [Hertz].

Remarks

This property sets the end frequency of the search range for a frequency resonance
peak. This frequency has to be higher than the FreqSearchEnd value. If
AutoFregSearchRange is enabled the start and end point of the sweep is
automatically calculated from the cantilever's properties.

The setting of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation".

See also

Property OperatingMode, FreqSearchStart, FreqSearchStep, AutoFregSearchRange
Method SearchVibratingFreq

7.9.1.7 OperatingMode::FreqSearchStart

Returns or set the start frequency of the frequency peak search range.
Syntax
opmode.FreqSearchStart [= freq]
Setting
Argument Type Description
freq double Defines the start frequency of the search range in [Hertz].
Remarks

This property sets the start frequency of the search range for a frequency resonance
peak. This frequency has to be lower than the FreqSearchEnd value. If

©2022 by Nanosurf, all rights reserved

220 Script Programmers Manual

AutoFreqgSearchRange is enabled the start and end point of the sweep is
automatically calculated from the cantilever's properties.

The setting of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation”.

See also

Property OperatingMode, FregSearchEnd, FregSearchStep, AutoFregSearchRange
Method SearchVibratingFreq

7.9.1.8 OperatingMode::FreqSearchStep

Returns or set the frequency increment of the frequency peak search range.
Syntax

opmode.FreqSearchStep [=increment]
Setting

Argument Type Description

increment double Defines the increment frequency in [Hertz].

Remarks

This property sets the frequency step used by the search for a frequency resonance
peak. The frequency step is used for the coarse frequency search only. Increasing the
step with a faster sweep is performed but for high Q-Factor cantilever this can end up
with bad detection of the peak. The number of amplitude and phase measurements per
sweep can be calculated:

Datapoints = (FreqSearchEnd - FreqSearchStart) / FreqSearchStep + 1

The setting of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation”.

See also

Property OperatingMode, FregSearchStart, FreqSearchEnd, AutoFreqSearchRange
Method SearchVibratingFreq

©2022 by Nanosurf, all rights reserved

Object Reference 221

7.9.1.13 OperatingMode::LeverExcitationMode

Defines the configuration of the cantilever tip signal.

Syntax

mode = opmode.LeverExcitationMode

Result

Argument Type Description

mode long Defines the mode of operation for the cantilever shaking piezo

Remarks

This property defines the configuration of the excitation signal to the shaking piezo of

the cantilever.

The excitation can be applied internally by the controller or externally by a user defined

source.

Table of available mode values:

ce

State | Name Description
No.
0 |LeverMbde_l nternal Sour |Excitation signal to the shaking piezo is driven by

the internal oscillator of the controller.

1 Lever Mbde_Ext er nal Sour

Excitation signal to the shaking piezo is driven by a

ce external source connected to the easyScan 2
Signal Access Module Advanced BNC "Excitation
input”.
See also
None
Version info

Software v1.5.1.1 or later

7.9.1.14 OperatingMode::OperatingMode

Returns or set the sensor operating mode.

Syntax

©2022 by Nanosurf, all rights reserved

222

Script Programmers Manual

opmode.OperatingMode [= mode]

Setting
Argument Type Description
mode long Defines the mode of operating of the sensor system. See valid
mode index in the table below.
Remarks

For AFM many different operating modes are usable. They differ on how the cantilever
deflection signal is preprocessed and interpreted. This property defines them.

Some modes has their special settings properties. Many of them are automatically set.
But if desired the Auto... properties can be set to Fal se and with mode specific
properties manual settings can be defined.

Attention: If a operating mode is changed a change of cantilever is also necessary for
proper operation. Set Cantilever accordingly.
For more information please refer to the Nanosurf Software Reference Manual.

Table of operating mode values and description:

State | Name Description
No.
0 OpMode_User Undefined
1 OpMode_STM For STM scan heads use this index
2 OpMode_StaticAFM AFM only: Static deflection mode
3 OpMode_DynamicAFM |AFM only: Dynamic force mode
4 OpMode_PhaseContrast |AFM only: Phase contrast mode
5 OpMode_ForceModulation |JAFM only: Force modulation mode
6 OpMode_SpreadingResist [AFM only: Spreading resistance mode
ance
7 OpMode_ConstPhase AFM only: Constant phase mode
8 OpMode_A Probe_dF A probe only: Frequency modulation mode
9 OpMode_Lateral Force |[AFM only: Lateral force mode
Example

enabl e dynam ¢ AFM and use NCLR Lever
obj OpMode. Oper ati ngMode = 3
obj OpMode. Cantil ever = 1

©2022 by Nanosurf, all rights reserved

Object Reference 223

See also

Property Cantilever.

7.9.1.15 OperatingMode::PeakAmplReduction

Returns or set the amplitude reduction from the resonance peak at auto peak search.
Syntax

opmode.PeakAmpIReduction [= value]
Setting

Argument Type Description
value double Defines the reduction of the amplitude from resonance peak
maximum in [%)].

Remarks

This property sets the amplitude reduction value used at automatically resonance peak
searches. The actual vibrating frequency is set not to the resonance peak of the
cantilever but at either side of the peak with a small reduction of the amplitude. The
amount of this reduction is defined with this property. To which side of the resonance
peak the frequency shift is done set property PeakUpperSideBand.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

See also

Property OperatingMode, PeakUpperSideBand

7.9.1.16 OperatingMode::PeakUpperSideBand

Returns or set the to which side of the resonance peak the frequency should be shifted.
Syntax

opmode.PeakUpperSideBand [= flag]

©2022 by Nanosurf, all rights reserved

224 Script Programmers Manual

Setting

Argument Type Description

flag Boolean Set to Tr ue if the frequency is shifted to higher frequency. Fal se
shifts the vibrating frequency to lower values.

Remarks
This property sets the amplitude reduction value used at automatically resonance peak
searches. The actual vibrating frequency is set not to the resonance peak of the
cantilever but at either side of the peak with a small reduction of the amplitude. To
which side of the resonance peak the frequency shift is done set this property.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

See also

Property OperatingMode, PeakAmplReduction

7.9.1.17 OperatingMode::ReferencePhase

Returns or set the reference phase for phase measurement.
Syntax

opmode.ReferencePhase [= phase]
Setting

Argument Type Description

phase double Defines the reference phase in [radian].

Remarks

This property sets the reference phase for the phase measurement of the cantilever
returning vibrating signal. If AutoReferencePhase is set the reference phase is set
automatically after approach. The microscope electronics is measuring the difference
between the reference phase signal and the sensor return signal. Best performance of
this measurement is done at 90° phase difference between these signals.
Readjusment of the phase can be triggered with SearchReferencPhase.

The setting of this property is used in the operating mode "Phase Contrast".

©2022 by Nanosurf, all rights reserved

Object Reference 225

Example

set the reference phase to 30°
obj OpMode. Ref erencePhase = 30.0 / 180.0 * 3.1415

See also

Property OperatingMode, AutoReferencePhase
Method SearchReferencePhase

7.9.1.18 OperatingMode::ShowFreqSearchChart

Returns or set a flag to define if bode plot charts as a result of frequency peak search
are shown or not.

Syntax

opmode.ShowFreqSearchChart [= flag]

Setting

Argument Type Description

flag Boolean Set to Tr ue if charts should be displayed.
Remarks

This property defines if all bode plot charts as a result of a frequency peak search is
displayed in new image documents or not.

Frequency peak searches can be performed automatically if AutoVibrartingFreq is
enabled or if SearchVibratingFreq is called.
To display the chart only if desired call CaptureFreqSearchChart.

Example

see exanpl e at nethod SearchVi bratingFreq

See also

Property AutoVibratingFreq
Method SearchVibratingFreq, CaptureFreqSearchChart

©2022 by Nanosurf, all rights reserved

226 Script Programmers Manual

7.9.1.19 OperatingMode::TipSignalMode

Defines the configuration of the cantilever tip signal.
Syntax

mode = opmode.TipSignalMode
Result

Argument Type Description

mode long Defines the mode of operation for tip signal

Remarks
This property defines the configuration of the tip connection.
The tip signal can be wired differently to user in/outputs or internal signals of the
controller.

Table of available mode values:

State | Name Description
No.
0 [Ti pSi g_Current Sensl npu [Tip signal is configured as current measurement
t input.

1 |Ti pSi g_Vol t ageQut put Tip signal is configured as a wiltage output

2 |Ti pSi g_Direct Feedt r oug |Tip signal is connected directly to the easyScan 2 Signal
h Access Modul Advanced BNC Input "Tip Signal”

See also

Property objCtrl. TipVoltage

Version info

Software v1.5.1.1 or later

7.9.1.20 OperatingMode::VibratingAmpl
Returns or set the free vibrating amplitude.
Syntax

opmode.VibratingAmpl [= ampl]

©2022 by Nanosurf, all rights reserved

Object Reference 227

Setting

Argument Type Description

ampl double Defines the free vibrating amplitude in [V].

Remarks

This property sets the free amplitude of the cantilever. The excitation of the cantilever is
set so that the returning sensor signal is at this value. During the adjustment of the
amplitude the cantilever is withdrawn from the surface. The excitation frequency is
defined by VibratingFreq.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

Example

enabl e dynam ¢ AFM and set anplitude to 50nVv
obj OpMode. Oper at i nghode
obj OpMode. Vi br at i ngAnpl

3
0.05 '[V]
See also

Property OperatingMode, VibratingFreq

7.9.1.22 OperatingMode::VibratingFreq

Returns or set the vibrating frequency.
Syntax
opmode.VibratingFreq [= freq]
Setting
Argument Type Description
freq double Defines the vibrating frequency in [Hertz].
Remarks
This property sets the excitation frequency of the cantilever. If AutoVibratingFreq is
set the frequency is set automatically to the resonance peak of the cantilever. The

amplitude if the vibration is defined by VibratingAmpl.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

©2022 by Nanosurf, all rights reserved

228 Script Programmers Manual

Example

read the resonance frequency of the cantilever
freq = obj OpMode. Vi brati ngFreq

See also

Property OperatingMode, AutoVibratingFreq, VibratingAmpl,

7.9.2 Methods
7.9.2.1 OperatingMode::CaptureFreqSearchChart

Creates an image document with the last frequency search bode plot data.
Syntax

opmode.CaptureFreqSearchChart
Remarks

This method creates an new image document with the last executed frequency search
result.

Example

define search range
obj OpMode. FreqSearchStart = 100000 ' Hz
obj OpMode. FreqSear chEnd = 200000 ' Hz
obj OpMode. Showrr eqSear chChart = Fal se

obj OpMode. Sear chVi brati ngFreq
Do Wil e obj OpMode. | sFreqSear chRunning : Loop
obj OpMode. Capt ur eFr eqSear chChar t

See also

Method SearchVibratingFreq, IsFreqSearchRunning
Method Application.SaveDocument

7.9.2.2 OperatingMode::FreqSearchResult
Returns or set the sensor operating mode.
Syntax

status = opmode.FreqSearchResult

©2022 by Nanosurf, all rights reserved

Object Reference 229

Setting

Argument Type Description

status long Returns a status number which informs about the last frequency
search result. See possible status numbers in the table below.

Remarks

This method returns the status of the last executed frequency search. Either called
automatically at approach or manually by SearchVibratingFreq.

Table of possible status results:

Status | Name Description
No.

0 FreqSweepStat_Peak|A frequency peak could not be found
NotFound

1 FregSweepStat_Peak|Frequency peak successfully found. Read VibratingFreq
Found for value.

2 FregSweepStat_RunnFrequency search is in process.
ing

Example

see exanmpl e at nmethod SearchVi bratingFreq

See also

Property AutoVibratingFreq
Method SearchVibratingFreq, IsFreqSearchRunning

7.9.2.3 OperatingMode::GetFreqSweepLine / GetFreqSweepLine2

Returns a string of data values of a stored frequency data line.
Syntax

str_array = objData.GetFreqSweepLine(group, channel, linefilter,conversion)
variant_array = objData.GetFreqSweepLine2(group, channel, line filter,conversion)

Argument

©2022 by Nanosurf, all rights reserved

230

Script Programmers Manual

Paramete [Type Description
r
group short desired group index
channel |short desired channel index
line short desired line index
filter short index of mathematical filter to be used
conversion |short index of conwersion type of results
Result
Result Type Description
str_array |String Character string with comma separated values of all the values of
the data line
variant_arr |[double |numerical array of values of all the values of the data line
ay array
Remarks

This method returns a string of data values of a data line stored in the container. The
signal will be extracted and the data values are processed with a filters as available for
the user in the "Chart Toolbar". The result is in a comma separated string in different

numerical formats.

The argument line is the number of the data line to extract. 0 is the bottom line and the

value property Lines -1 the top most one.

The argument filter defines the data processing algorithm to be used.

Table of filter index:

Filter | Filter Name Description
No.

0 FilterRaw No data processing
1 FilterMean The mean value is subtracted
2 FilterPlane The background plane is subtracted
3 FilterDerive The derivative of the signal is calculated
4 FilterParabola A second order fit is subtracted
5 FilterPolynominal |A forth order fill is subtracted

For more detailed description of the filter algorithm please refer to the Nanosurf
Software Reference Manual.

©2022 by Nanosurf, all rights reserved

Object Reference 231

The argument conversion defines the format of the resulting string array.

Table of conversion index:

Conversio| Conversion Name Description
n No.
0 ConversionBinary16 [Output as signed 16bit data values
1 ConversionPhysical [Output as floating point values in physical base unit
ConversionBinary32 |Output as signed 32bit data values

See also

Lines Property

7.9.2.5 OperatingMode::IsFreqSearchRunning

Returns a flag if frequency peak search is running or not.
Syntax

flag = opmode.IsFreqSearchRunning
Result

Argument Type Description

flag Boolean Returns True if frequency search is currently executing otherwise
Fal se.

Remarks

This method returns Tr ue if a frequency sweep is running. A sweep can be started
automatically by an approach or method SearchVibratingFreq.

Example

see exanpl e at nethod SearchVi bratingFreq

See also

Property AutoVibratingFreq
Method SearchVibratingFreq

©2022 by Nanosurf, all rights reserved

232 Script Programmers Manual

7.9.2.6 OperatingMode::IsPhaseSearchRunning

Returns a flag if phase calibration is running or not.
Syntax

flag = opmode.IsPhaseSearchRunning
Result

Argument Type Description

flag Boolean Returns True if phase calibration is currently executing otherwise
Fal se.

Remarks

This method returns Tr ue if a phase calibration is running. A calibration can be started
automatically after an approach or method SearchReferencePhase.

This method is used in the operating mode "Phase Contrast".

Example

see exanple at nethod SearchReferencePhase

See also

Property AutoReferencePhase, ReferencePhase
Method SearchReferencePhase

7.9.2.7 OperatingMode::SearchReferencePhase

Calibrates the reference phase to the actual input phase..
Syntax
opmode.SearchReferencePhase
Remarks
This method calibrates the reference phase according to the actual sensor signal
phase that best sensitivity is reached. Best sensitivity is reached when the reference

phase and the input phase are 90° phase shifted.

During the calibration method IsPhaseSearchRunning returns true. The result of the
calibration can be read afterwards from property ReferencePhase.

©2022 by Nanosurf, all rights reserved

Object Reference 233

Example

recal i brate phase
obj OpMode. Sear chRef er encePhase
Do Wil e obj OpMbde. | sPhaseSear chRunni ng : Loop
MsgBox "New reference phase is " & (obj OpMode. Ref erencePhase / 3.1415 * 180.0) &

See also

Property ReferencePhase, AutoReferencePhase
Method IsPhaseSearchRunning

7.9.2.8 OperatingMode::SearchVibratingFreq

Searches the resonance peak of the cantilever and set the vibrating frequency.
Syntax

opmode.SearchVibratingFreq
Remarks

This method searches the resonance peak of a cantilever. It performs a excitation
frequency sweep in a certain frequency range and detects frequency with amplitude
maximum. In a second frequency sweep a more close observation of the found
resonance frequency is performed and the property VibratingFreq is set according to
the Peak... property.

During the search method IsFreqSearchRunning returns True. If a search was
successful or not is returned by FreqSearchResult. The result of the frequency
sweep the bode plot can be saved with CaptureFreqSearchChart or automatically if
ShowFreqSearchChart is enabled.

A set of properties is defining the resonance search:

Property name Purpose

FregSearchStart Defines the lower frequency of the vibrating frequency search
range

FreqSearchEnd Defines the upper frequency of the vibrating frequency
search range

FreqSearchStep Defines the step resolution of the vibrating frequency search

AutoFregSearchRange Flags if the frequency search area is automatically calculated

©2022 by Nanosurf, all rights reserved

234 Script Programmers Manual

PeakAmplReduction Defines the shift of operating frequency point from peak maximum
PeakUpperSideBand Flags if the shift is to the upper or lower side of the peak
Example

manual search of resonance peak

define search range
obj OpMode. FreqSear chSt art
obj OpMode. FreqSear chEnd

150000 ' Hz
250000 ' Hz

execute search
obj OpMode. Showrr eqSearchChart = True
obj OpMode. Sear chVi br ati ngFreq
Do Wil e obj OpMode. | sFreqSear chRunning : Loop

check if peak found and report result
I f obj OpMode. FreqSearchResult = 1 Then

MsgBox " Resonance found at " & obj OpMode. Vi brati ngFreq & "Hz"
El se

MsgBox "No resonance peak found"
End | f

See also

Property VibratingFreq, ShowFreqSearchChart
Method IsFregSearchRunning, FreqSearchResult

7.10 Scan
The Scan class handles the microscope's imaging subsystem.

Imaging is done by a line by line scanning process over the surface. During the scanning
the z height information and other supplementary signals are recorded at data points
along each scan line. These data points are stored in N*M Matrixes and are displayed on
screen as charts.

A set of properties are defining the physical imaged area, the recorded signals and the
number of data points. See the property table below. For more information about the
physical reference coordinate system please refer to the Nanosurf Software Reference
Manual.

A single image frame is measured by calling StartFrameUp, a continuous scan by
calling Start. Is a complete image frame measured the stored results can by copied in a
image document by method StartCapture. If a script is interested in numeric values of a
scan line in the matrix use GetLine method.

A object pointer to this class is provided by the Application.Scan object property.

©2022 by Nanosurf, all rights reserved

Object Reference 235

Table of properties for Scan class:

Property name

Purpose

AutoCapture

Get or set the flag if auto capture is active

AutoDeleteBuffer

Get or set the auto delete buffer function

AutoSlopeCorrection

Enable or disable the auto slope correction function

ImageWidth Physical width of a image frame

ImageHeight Physical height of a image frame

Points Number of data points measured per scan line

Lines Number of scan lines per image frame

Scantime Speed of scan movement per scan line

Rotation Z-Rotation of the image frame regarding the physical coordinate system

SlopeX X-Axis rotation of the image plane regarding the physical coordinate
system

SlopeY Y-Axis rotation of the image plane regarding the physical coordinate
system

CenterPosX Offset of the image center regarding the X-Axis of the physical coordinate
system

CenterPosY Offset of the image center regarding the Y-Axis of the physical coordinate
system

Owerscan Relation between the physical scan line length and the image width

ZPlane Offset of the image plane regarding the Z-Axis of the physical coordinate
system

Scanmode Mode of scanning if in scan was started with method Start

Measuremode Mode of scan line measurement

LineMode Mode how a scan line is scanned

LineScanning Mode how a scan line is scanned

RelTipPos Offset of tip in ConstHeight LineMode

SyncOutMode

Returns or selects the mode of the synchronization output

FirstScanlineRep

Returns or set the number of repetitions of the first scan line per frame

ContourEnabled

Return or set ContourEnabled

AutoReadjustProbeEnabl
ed

Return or set AutoReadjustProbeEnabled

ReadjustLiftHeight

Return or set ReadjustLiftHeight

SndScanDynamicAmplitu

de

Return or set SndScanDynamicAmplitude

©2022 by Nanosurf, all rights reserved

236

Script Programmers Manual

SndScanDynamicAmplitu

deEnabled

Return or set SndScanDynamicAmplitudeEnabled

SndScanForceModulation

Amplitude

Return or set SndScanForceModulationAmplitude

SndScanForceModulation

AmplitudeEnabled

Return or set SndScanForceModulationAmplitudeEnabled

SndScanEnableDarkMod |Return or set SndScanEnableDarkMode
=
SndScanEnableKPEM Return or set SndScanEnableKPFM

SndScanSndLockInExcita

tionAmplitude

Return or set SndScanSndLockInExcitationAmplitude

SndScanSndLockInExcita|

tionAmplitudeEnabled

Return or set SndScanSndLockInExcitationAmplitudeEnabled

PrescanSpeedup

Return or set the speedup of the Prescan scan mode

Table of methods for Scan class:

Method name

Purpose

DeleteBuffer

Deletes the content of the chart buffer

ShowWindow Controls the visibility of the imaging window
Start Starts image scanning.

Stop Stops image scanning

Pause Pauses the scanning

StartFrameUp Start a single scan frame direction upward
StartFrameDown Start a single scan frame direction downward
StartPrescan Start a single QuickPrescan (direction upward)

StopPrescan

Stops a running QuickPrescan

Currentline Get number of the current measured scan line
IsScanning Retrieve the information whether a scanning is in process or not

IsScanningPrescan

Retrieve the information whether a QuickPrescan is in process or not

IsPaused

Return true if the current imaging process is paused

StartCapture

Prepare a image capture if scanning or do it immediately

StopCapture

Clear a prepared image capture

IsCapturing

Retrieve the information whether a capture is prepared or not

StartSlopeCorrection

Starts the slope correction

©2022 by Nanosurf, all rights reserved

Object Reference 237

IsSlopeCaorrectionRunning|Returns if a slope correction process is running or not

GetLine / GetLine2 Retrieve the data point values of a scan line. Returns the value as string or
variant.

ImageSize Set the physical size of a image

GetFrameDir Retrieve the current scan direction

7.10.1 Properties

7.10.1.1 Scan::AutoCapture

Returns or set a flag if AutoCapture is activated.

Syntax
scan.AutoCapture [= flag]
Setting

Argument Type Description

flag boolean Set to True AutoCapture is activated and set to False AutoCapture
is deactivated.

Remarks
none

See also

7.10.1.2 Scan::AutoDeleteBuffer

Get or set the auto delete buffer function.
Syntax

scan.AutoDeleteBuffer [= state]
Setting

Argument Type Description

©2022 by Nanosurf, all rights reserved

238 Script Programmers Manual

state bool

Remarks

If set to TRUE the function is enabled. If set to FALSE the function
is disabled

If the AutoDeleteBuffer function is active the chart buffer will be automatically delete
every time the Scan restarts.

For more information about this function please refer to the Nanosurf Software

Reference Manual.

See also

Method DeleteBuffer

7.10.1.3 Scan::AutoReadjustProbeEnabled

Returns or set the AutoReadjustProbeEnabled.

Syntax

scan.AutoreadjustProbeEnabled [= state]

Setting

Argument Type

state bool

Remarks

See also

Description

Defines the AutoReadjustProbeEnabled state

Property ReadjustLiftHeight

Version info

Software v3.6.0.0 or later

7.10.1.4 Scan::AutoSlopeCorrection

Enable or disable the auto slope correction function.

Syntax

scan.AutoSlopeCorrection [= state]

©2022 by Nanosurf, all rights reserved

Object Reference 239

Setting

Argument Type Description

state bool If set to TRUE the function is enabled. If set to FALSE the function
is disabled

Remarks

If the AutoSlopeCorrection function is active the X/Y slopes will be corrected after every
approach.

For more information about this function please refer to the Nanosurf Software
Reference Manual.

See also

Property

7.10.1.5 Scan::.CenterPosX

Returns or set the image X-Axis center position.
Syntax

scan.CenterPosX [= pos]
Setting

Argument Type Description

pos double Defines the X-Axis position of the image center in meter

Remarks

The image can be place anywhere inside the maximal scan area defined by the scan
head. To place a image not in the center of the scan area a displacement vector
composed of CenterPosX and CenterPosY can be used. The maximal X-Axis
displacement can be calculated by (MaxScanrange - ImageWidth / 2) if Overscan
and Rotation are both zero.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

pl ace a 30um i nage off center to (20um -50um)

©2022 by Nanosurf, all rights reserved

240 Script Programmers Manual

obj Scan. | mageSi ze 30e- 6, 30e-6
obj Scan. Cent er PosX 20e-6
obj Scan. Cent er PosY -50e-6

See also

Property CenterPosY, ImageWidth, Overscan, Rotation

7.10.1.6 Scan::CenterPosY
Returns or set the image Y-Axis center position.
Syntax

scan.CenterPosY [= pos]

Setting

Argument Type Description

pos double Defines the Y-Axis position of the image center in meter
Remarks

The image can be place anywhere inside the maximal scan area defined by the scan
head. To place a image not in the center of the scan area a displacement vector
composed of CenterPosX and CenterPosY can be used. The maximal Y-Axis
displacement can be calculated by (MaxScanrange - ImageHeight / 2) if Overscan
and Rotation are both zero.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

pl ace a 30umimge off center to (20um -50um
obj Scan. | mageSi ze 30e- 6, 30e-6
obj Scan. Cent er PosX = 20e-6
obj Scan. Center PosY = -50e-6

See also

Property CenterPosX, ImageHeight, Overscan, Rotation

©2022 by Nanosurf, all rights reserved

Object Reference 241

7.10.1.7 Scan::ContourEnabled

Returns or set the ContourEnabled.
Syntax

scan.ContourEnabled [= state]
Setting

Argument Type Description

state bool Defines the ContourEnabled state
Remarks
Version info

Software v3.6.0.0 or later

7.10.1.8 Scan::FirstScanlineRep

Returns or set the number of repetitions of the first scan line per frame.
Syntax

scan.FirstScanlineRep [= val]
Setting

Argument Type Description

val long Defines the number of repetitions of first scan line at the beginning
of a image frame

Remarks

At a start of a new image measurement it can happen that the scan head signals are
not stable after the movement to the first scan line to start an image frame. Therefore
the program measure the first scaned line twice to get a nice first scan line.

In some cases this repetition of the first scan line is not of interest and should be
switched off. in other cases on repetition is not enough to stabilize the signal and more
repetitions are desired.

This property is controlling this repetitions. A Zero value means no repetition, a value of
one means one repetition and so on.

©2022 by Nanosurf, all rights reserved

242 Script Programmers Manual

Example

prepare a single profile
obj | mageSi ze le-6,0 ' dum | ength
obj Scan. Poi nts = 1024
obj Scan. Lines =1
obj Scan. FirstScanlineRep =0

measure profile
obj Scan. St art FrameUp
Do Wil e obj Scan.|sScanning : Loop

read profile
scanl i ne = obj Scan. GetLine(0,1,0,2,1)

See also
Property Lines

Version info

Software v1.4.0 or later

7.10.1.9 Scan::ImageHeight

Returns or set the physical width of a image frame.
Syntax

scan.ImageHeight [= height]
Setting

Argument Type Description

height double Defines the height of a image frame in meter

Remarks

The physical height of a image frame is defined by this property. The number of scan
lines per image frame is defined in property Lines. A ImageHeight of zero is allowed
and means that all scan lines are measured at the same position.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Proper scan head calibration is necessary to provide accurate image information.
Example

define a 20um i mage franme size

©2022 by Nanosurf, all rights reserved

Object Reference 243

obj Scan. | mageW dt h
obj Scan. | mageHei ght

20e-6
20e-6

See also

Property ImageWidth
Method ImageSize

7.10.1.10 Scan::ImageWidth

Returns or set the physical width of a image frame.
Syntax

scan.ImageWidth [= width]
Setting

Argument Type Description

width double Defines the width of a image frame in meter

Remarks

The physical length of each scan line is defined by this property. The number of data
points per scan line defined in property Points are spread continuously along the width
of a scan line. The time to measure along a scan line is defined in the property
Scantime. A width of zero is allowed and means that all data points are measured at
the same position.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Proper scan head calibration is necessary to provide accurate image information.
Example

define a 20um i mage franme size
obj Scan. | mageW dt h 20e-6
obj Scan. | mageHei ght 20e-6

See also

Property ImageHeight, Points, Scantime
Method ImageSize

©2022 by Nanosurf, all rights reserved

244 Script Programmers Manual

7.10.1.11 Scan::LineMode

Returns or set the mode a scan line is scanned.
Syntax

scan.LineMode [= mode]
Setting

Argument Type Description

mode long Defines the how a scan line is scanned. See modes in the table
below.

Remarks
Scan lines can be measured differently. This property defines this.

Table of scan line mode values and description:

State | Name Description
No.
0 LineMode_Standard The tip is scanned over the surface with Z-Controller

settings and topography information is recorded

1 LineMode_ConstHeight |[The tip hovers above the surface at a defined distance.
The distance is defined by scan.RelTipPos property.
Topography height is only recorded at the beginning and
end of each scan line.

See also

Property RelTipPos

Version info

Available since Software v1.5.0 (No longer available v3.6 and up)

7.10.1.12 Scan::Lines

Returns or set the scan lines per image frame.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 245

scan.Lines [=lines]

Setting

Argument Type Description

lines long Defines the number of scan lines per scan frame
Remarks

Aimage frame is composed by individual scan lines. The number of scan lines is
defined by this property.

To scan a frame a minimal value of two scan lines have to be set which are placed at
the bottom and the top of the image height. More scan lines are spread continuously
along the height of a scan frame defined by property ImageHeight.

Aline value of one set the image height to zero and single profile line can be measured.

The movement from one scan line to the next is done at the left side of a image frame
and is always as smooth as possible by the resolution of the electronics and not related
to the number of scan lines.

Example

define a i nage
obj Scan. | mageSi ze 20e- 6, 20e- 6
obj Scan. Poi nts = 256
obj Scan. Lines = 256

See also

Property ImageHeight, Points
Method ImageSize

7.10.1.13 Scan::LineScanning

Returns or set the mode a scan line is scanned.
Syntax

scan.LineScanning [= mode]
Setting

Argument Type Description

mode long Defines the how a scan line is scanned. See modes in the table

©2022 by Nanosurf, all rights reserved

246

Script Programmers Manual

Remarks

below.

Scan lines can be measured differently. This property defines this.

Table of scan line mode values and description:

State
No.

Name

Description

0

Standard

The tip is scanned over the surface with Z-Controller
settings and topography information is recorded

Dual scan

In Dual-Pass Imaging Mode each scan line is measured
first with z-controller on and then a second time with
lifted tip and Z-Controller off, both as Forward Scan and
Backward Scan.

The parameter “Contour” enables the contour
reproduction, otherwise only the slope is corrected.

The parameter “Lift Height” defines the lift up distance
used for the second pass. The z reference position is
taken at the tip z position at the start x/y-position of the
second pass.

Interlaced

In Interlaced Dual-Pass Imaging Mode each scan line is
measured first as Forward scan line with z-controller on
and then during the backward scan line with lifted tip and
Z-Controller off .

The parameter “Contour” enables the contour
reproduction, otherwise only the slope is corrected.

The parameter “Lift Height” defines the lift up distance
used for the second pass. The z reference position is
taken at the tip z position at the start x/y-position of the
second pass.

Second scan only

In Second-Pass Only Imaging Mode each scan line is
measured only with z-controller off. At the beginning of
the scan line the Z-Controller is switched off and the tip
is lifted. Then only Slope corrected Second-Pass is
possible. Optional the Surface reference is probed again
prior the backward scan line.

The parameter “Dual Probing” activates baseline probing
of surface also for the backward scan. Otherwise
baseline probing is only done for forward scan.

The parameter “Lift Height” defines the lift up distance
used for the second pass. The z reference position is
taken at the tip z position at the start x/y-position of the
second pass.

©2022 by Nanosurf, all rights reserved

Object Reference 247

See also

Property RelTipPos

Version info

Software v3.6.0.0 or later

7.10.1.14 Scan::Measuremode

Returns or set the mode of measure a scan line.
Syntax

scan.Measuremode [= mode]
Setting

Argument Type Description

mode long Defines the mode of measure a scan line. See modes in the table
below.

Remarks

Each scan line is divided in a forward scan and a backward scan. Which direction is
stored in the image matrix is defined by this property.

Table of measure mode values and description:

State | Name Description
No.
0 Measure_None not allowed
1 Measure_Forward Record forward scan data only
2 Measure_Backward Record backward scan data only
3 Measure_FwBw Record forward and backward scan data
See also

Method Start

©2022 by Nanosurf, all rights reserved

248 Script Programmers Manual

7.10.1.15 Scan::Overscan

Returns or set the over scan factor per scan line.
Syntax

scan.Overscan [= overscan]
Setting

Argument Type Description

owerscan double Defines the over scan factor per scan line in percentage

Remarks

Each scan line can be set larger that the measured and displayed part of it. This can
help on bad samples reducing start of scan line signal distortions. If Overscan is a
none zero vale then the physical scanning of a scan line is larger than defined in
ImageWidth. On both sides of the scan line a part of the movement is suppressed
during data accusation. The length of the suppressed part is

Overscan size = ImageWidth * Overscan / 100
therefore the real physical movement is
scan line length = ImageWidth * (1+2*Overscan/100)

Example

activate an over scan of 10%
obj Scan. | mageW dt h = 30e-6
obj Scan. Over scan 10.0

See also

Property ImageWidth

7.10.1.16 Scan::Points

Returns or set the data points per scan line.
Syntax
scan.Points [= points]

Setting

©2022 by Nanosurf, all rights reserved

Object Reference 249

Argument Type Description
points long Defines the number of data points per scan line

Remarks

During the movement along each scan line a number of data points are taken and
stored in a matrix in memory. The signal channels which are measured at each data
point is related to the active operating mode but normally at least the z height
information signal is measured.

A minimal value of two data points have to be set which are placed at the start and the
end of each scan line. More data points are spread continuously along the width of a
scan line defined by property ImageWidth.

The scan movement is always as smooth as possible by the resolution of the
electronics and not related to the number of data points. Depending on the used Z
Controller algorithm a filtering of the measurement can be enabled to suppress noise.

Example

define a imge
obj Scan. | mageSi ze 20e- 6, 20e-6
obj Scan. Poi nts = 256
obj Scan. Lines = 256

See also

Property ImageWidth, Lines, Scantime
Method ImageSize
Class ZController

7.10.1.17 Scan::ReadjustLiftHeight

Returns or set the ReadjustLiftHeight.
Syntax

scan.ReadjustLiftHeight [= distance]
Setting

Argument Type Description

distance double Defines the ReadjustLiftHeight in meter

Remarks

©2022 by Nanosurf, all rights reserved

250 Script Programmers Manual

See also

Property AutoReadjustProbeEnabled

Version info

Software v3.6.0.0 or later

7.10.1.18 Scan::RelTipPos

Returns or set the offset of the tip in ConstHeight mode.
Syntax

scan.RelTipPos [= offset]
Setting

Argument Type Description

offset double Defines the position of the tip relative to surface height in
ConstHeight Linemode.

Remarks

If LineMode is set to "ConstHeight" this property defines the position of the tip during the
measurement of a scan line. It is a relative position to the current surface height at the
beginning of a scan line. The surface height is sensed at each start of a movement (e.g
Forward_Scan and Backward_Scan)

Example

Measure an i mage in ConstHei ght Mde
obj Scan. Li neScanning = 3
obj Scan. Rel Ti pPos = -500e-9 'nm
obj Scan. Start

See also

LineMode Property, Scan::LineScanning

7.10.1.19 Scan::Rotation
Returns or set the image rotation.
Syntax

scan.Rotation [=angle]

©2022 by Nanosurf, all rights reserved

Object Reference 251

Setting

Argument Type Description

angle double Defines the rotation angle of the image in degree

Remarks

The image can be rotated around its center point by any angel according to the physical
reference coordinate system. A positive angle defines a rotation of the scan line in
positive scientific notation. The center point of the image is defined by the CenterPosX
and CenterPosY properties.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example
rotate a i mage by 45 degree
obj Scan. Rotation = 45.0
See also

Property CenterPosX, CenterPosY

7.10.1.20 Scan::Scanmode

Returns or set the mode of scanning a image frame.
Syntax

scan.Scanmode [= mode]
Setting

Argument Type Description

mode long Defines the mode of scanning. See modes in the table below.
Remarks

The continuous imaging process can be controlled with this property. The following

modes are available. The Scanmode value has only an effect if scan process is

started with method Start.

Table of scan mode values and description:

©2022 by Nanosurf, all rights reserved

252 Script Programmers Manual

State
No.

Name

Description

0

Scanmode_Continuous

Switch scan direction after each scan frame

1

Scanmode_ContUp

scan direction always upward (scan line 0 to max)

2

Scanmode_ContDown

scan direction always downward (scan line max to 0)

See also

Method Start

7.10.1.21 Scan::Scantime

Returns or set the time used for scanning one scan line.

Syntax

scan.Scantime [=time]

Setting

Argument Type Description

time

Remarks

double Defines the time used to scan one scan line in seconds.

This property is defining the time for one scan line in one direction. A scan line needs
twice the time defined with Scantime for scanning a scan line in both forward and
backward direction.

Normally the time to move a length of ImageWidth is equal Scantime. But if Overscan
is none zero the time has to calculated as:

Time for ImageWidth = Scantime / (1+2*Overscan/100)

Example

set scantine to get a scan frame in 5mn

obj Scan. Scanti me

See also

=5 * 60 / objScan.Lines /| 2

Property ImageWidth, Lines, Overscan

©2022 by Nanosurf, all rights reserved

Object Reference 253

7.10.1.22 Scan::SlopeX

Returns or set the X-Axis slope compensation angle.
Syntax

scan.SlopeX [= angle]
Setting

Argument Type Description

angle double Defines the X-Axis slope angle in degree

Remarks

The image plane can be tilted to compensate a sample slope. A positive angle defines
a rotation of the scan line in positive scientific notation around the X-Axis.

If Rotation is zero the SlopeX is used to compensate the slope along the ImageWidth
and SlopeY the slope along ImageHeight!

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

conpensate a slope of 3 degree
obj Scan. Sl opeX = 3.0

See also

Property SlopeY, Rotation

7.10.1.23 Scan::SlopeY

Returns or set the Y-Axis slope compensation angle.
Syntax

scan.SlopeY [= angle]
Setting

Argument Type Description

angle double Defines the Y-Axis slope angle in degree

©2022 by Nanosurf, all rights reserved

254 Script Programmers Manual

Remarks

The image plane can be tilted to compensate a sample slope. A positive angle defines
a rotation of the scan line in positive scientific notation around the Y-Axis.

If Rotation is 90° the SlopeY is used to compensate the slope along the ImageWidth
and Slopex the slope along ImageHeight!

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example
conpensate a slope of -0.5 degree
obj Scan. Sl opeY = -0.5
See also

Property SlopeX, Rotation

7.10.1.24 Scan::SndScanDynamicAmplitude

Returns or set the SndScanDynamicAmplitude.
Syntax

scan.SndScanDynamicAmplitude [= amplitude]
Setting

Argument Type Description

amplitude double Defines the SndScanDynamicAmplitude in volt

Remarks

See also

Property SndScanDynamicAmplitudeEnabled

Version info

Software v3.6.0.0 or later

©2022 by Nanosurf, all rights reserved

Object Reference

7.10.1.25 Scan::SndScanDynamicAmplitudeEnabled

Returns or set the SndScanDynamicAmplitudeEnabled.
Syntax

scan.SndScanDynamicAmplitudeEnabled [= state]
Setting

Argument Type Description

state bool Defines the SndScanDynamicAmplitudeEnabled state

Remarks

See also

Property SndScanDynamicAmplitude

Version info

Software v3.6.0.0 or later

7.10.1.26 Scan::SndScanEnableDarkMode
Returns or set the SndScanEnableDarkMode.
Syntax

scan.SndScanEnableDarkMode [= state]

Setting

Argument Type Description

state bool Defines the SndScanEnableDarkMode state
Remarks
Version info

Software v3.6.0.0 or later

255

©2022 by Nanosurf, all rights reserved

256 Script Programmers Manual

7.10.1.27 Scan::SndScanEnableKPFM
Returns or set the SndScanEnableKPFM.
Syntax
scan.SndScanEnableKPFM [= state]

Setting

Argument Type Description

state bool Defines the SndScanEnableKPFM state
Remarks
Version info

Software v3.6.0.0 or later

7.10.1.28 Scan::SndScanForceModulationAmplitude

Returns or set the SndScanForceModulationAmplitude.
Syntax

scan.SndScanForceModulationAmplitude [=amplitude]
Setting

Argument Type Description

amplitude double Defines the SndScanForceModulationAmplitude in volt

Remarks

See also

Property SndScanForceModulationAmplitudeEnabled

Version info

Software v3.6.0.0 or later

©2022 by Nanosurf, all rights reserved

Object Reference 257

7.10.1.29 Scan::SndScanForceModulationAmplitudeEnabled

Returns or set the SndScanForceModulationAmplitudeEnabled.
Syntax

scan.SndScanForceModulationAmplitudeEnabled [= state]
Setting

Argument Type Description

state bool Defines the SndScanForceModulationAmplitudeEnabled state

Remarks

See also

Property SndScanForceModulationAmplitude

Version info

Software v3.6.0.0 or later

7.10.1.30 Scan::SndScanSndLocklnExcitationAmplitude

Returns or set the SndScanSndLockInExcitationAmplitude.
Syntax

scan.SndScanSndLockInExcitationAmplitude [=amplitude]
Setting

Argument Type Description

amplitude double Defines the SndScanSndLockInExcitationAmplitude in volt

Remarks

See also

Property SndScanSndLockInExcitationAmplitudeEnabled

Version info

Software v3.6.0.0 or later

©2022 by Nanosurf, all rights reserved

258

Script Programmers Manual

7.10.1.31 Scan::SndScanSndLockInExcitationAmplitudeEnabled

Returns or set the SndScanSndLockInExcitationAmplitudeEnabled.
Syntax

scan.SndScanSndLockInExcitationAmplitudeEnabled [= state]
Setting

Argument Type Description

state bool Defines the SndScanSndLockInExcitationAmplitudeEnabled state

Remarks

See also

Property SndScanSndLockInExcitationAmplitude

Version info

Software v3.6.0.0 or later

7.10.1.32 Scan::SyncOutMode

Returns or selects the mode of the synchronization output.
Syntax

scan.SyncOutMode [= mode]

Setting
Argument Type Description
mode long Defines the signal generated at the synchronization output during a
spectroscopy. See mode numbers in the table below.
Remarks

During a spectroscopy modulation different synchronisation signal can be generated at
the sync output.
The sync pulse durations is about 4us.

Table of possible modes:

©2022 by Nanosurf, all rights reserved

Object Reference 259

State | Name
No.

Description

0 SyncOut_NoSync

No sync pulses are generated output is at Low-Lever.

1 SyncOut_PulsSample |At each spectroscopy sample position a High-Pulse is
generated

2 SyncOut_PulsBegin At the beginning of spectroscopy measurement a High-
Pulse is generated

3 SyncOut_PulsEnd At the end of spectroscopy measurement a High-Pulse

is generated

4 SyncOut_PulsBeginAnd

At the beginning and the end of spectroscopy

End measurement a High-Pulse is generated
5 SyncOut_LevelBeginTOEJA High level is generated during the spectroscopy
nd measurement.

See also

Description of Sync-Output in the Operating Manual

Version info

Software v1.4.0 or later

7.10.1.33 Scan::ZPlane

Returns or set the Z-Axis center posit
Syntax

scan.ZPlane [= pos]
Setting

Argument Type Description

ion.

pos double Defines the Z-Axis center in meter

Remarks

The z axis position of the tip can be
feedback position signal is added to

predefined with this property. Any Z-Controller
this reference plane value.

If the Z-Controller is switch off or is very slow the tip position can be controlled by these

property. During scanning the slope

compensation plane is added to the tip position

too. Therefore the tip is moving during scanning along a 3D plane defined by the

©2022 by Nanosurf, all rights reserved

260

Script Programmers Manual

position vector CenterPosX, CenterPosY, ZPlane and the rotation vectors SlopeX,
SlopeY and Rotation.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

See also

Property CenterPosX, CenterPosY, SlopeX, SlopeY, Rotation

7.10.1.34 Scan::PrescanSpeedup

Returns or sets the speedup of the Prescan scan mode. The speedup doubles with
each integer increase of the PrescanSpeedup value.

Syntax
scan.PrescanSpeedup [= val]
Setting

Argument Type Description

PrescanSplong Defines the doubling of the speedup value of the Prescan scan
eedup mode

Remarks

Example

define a speedup of 8
obj Scan. PrescanSpeedup = 3

See also
Method StartPrescan

7.10.2 Methods

7.10.2.1 Scan::Currentline

Returns the number of the last measured scan line.
Syntax
line = scan.Currentline

Result

©2022 by Nanosurf, all rights reserved

Object Reference 261

Result Type Description

line long The last measured scan line number.

Remarks
This method is returning the number of the last measured scan line.
A scan frame is composed of scan lines. Scan line zero is the bottom one and the top
most is number Lines - 1.

This method can be used to monitor which scan lines are already measured during a
imaging process of a scan frame.

Example

keep track of neasured scan |ines and save topography to file

Di m obj App : Set objApp = CreateObject("Nanosurf. Application")

Di m obj Scan : Set obj Scan = obj App. Scan

Di m obj FS . Set objFS = CreateObject("Scripting. Fil eSystenObject")
DimobjFile : Set objFile = objFS.CreateTextFile("c:\Inmage.csv")

Dim curline

Di m scanl i ne

start scan
obj Scan. St art FrameUp

process all scan |ines
curline =0
Do Wil e obj Scan.|sScanni ng
I f obj Scan.Currentline > curline Then

save scanline
scanline = obj Scan. GetLine(0, 1, curline,0,0)
objFile.WiteLi ne scanline

wait for next
curline = curline + 1

End If
Loop
process last line

scanl i ne = obj Scan. GetLine(O0, 1, curline,0,Q0)
obj File. WiteLine scanline

cl ean up
obj File. Cl ose
Set obj File = Nothing

Set obj FS = Not hi ng

Set obj Scan = Not hi ng

Set obj App = Nothing
See also

Property Lines

©2022 by Nanosurf, all rights reserved

262 Script Programmers Manual

Method StartFrameUp, GetLine, IsScanning

7.10.2.2 Scan::DeleteBuffer

Deletes the content of the chart buffer.

Syntax

scan.DeleteBuffer

Remarks

This method deletes the content of the chart buffer.

Example

del ete chart buffer
obj Scan. Del et eBuf f er

See also

Property AutoDeleteBuffer

7.10.2.3 Scan::GetFrameDir

Returns the current scan direction.

Syntax

dir = scan.GetFrameDir

Result

Result

dir

Remarks

Type Description

long Returns the current scan direction. Valid direction number see

table below.

This method is returning the number of scan direction.

Table of direction number:

State
No.

Name

Description

0

ScanDir_None

Not scanning

1

ScanDir_Up

Currently scanning upward

2

ScanDir_Down

Currently scanning downward

©2022 by Nanosurf, all rights reserved

Object Reference 263

Example

obj Scan. Start
obj App. Sl eep(30)
I f obj Scan. Get FrameDir <> 0 Then
obj App. Print Stat usMsg " Scanni ng"
El se
obj App. Print StatusMsg "No scanni ng
End | f

See also

Method Start

7.10.2.4 Scan::GetLine
Returns a string of data values of a scan line.
Syntax

array = scan.GetLine(group,channel,scanlinefilter,conversion)

Argument
Paramete [Type Description
r
group long number of group
channel |long number of channel
scanline |long scan line number
filter long index of mathematical filter to be used
conwersion |long index of conwersion type of results
Result
Result Type Description
array String Character string with comma separated values of all the values of
the scan line
Remarks

This method returns a string of data values of a scan line. Any signal of a measured
image frame can be extracted and the data values can be processed with the same
filters as available for the user in the "Chart Toolbar". The result is in a comma

©2022 by Nanosurf, all rights reserved

264

Script Programmers Manual

separated string in different numerical formats.
The first two arguments group and channel selects the matrix of a specific signal.
The group number for scanned image frames depends on the measure mode.

Table of group numbers:

Measure mode | Group| Group Name Description
No.
Measure_Forw| O Group_ForwardSc|Groupf of image data for forwards scan
ard an lines
Measure_Back| 0 Group_Backward |Groupf of image data for backward scan
ward Scan lines
Measure_FwB 0 Group_ForwardSc|Groupf of image data for forwards scan
w an lines
1 Group_Backward |Groupf of image data for backward scan
Scan lines

In each group there are different channels. To get the values of a specific signal one
has to know the channel number. If a certain channel is available in a measurement
depends on the active operating mode during the measurement.

Table of channel numbers:

Channel| Signal Name Description
No.
0 SigDeflection |[Static cantilever deflection signal
1 SigTopograph [Z-Topography signal
y
2 SigAmplitude [Cantilever vibrating amplitude signal
3 SigPhase Cantilever phase shift signal
4 SigUser User's defined ADC input signal

The argument scanline is the number of the scan line to extract. O is the bottom line
and property Lines -1 the top most one.

The argument filter and conversion defines the data processing algorithm and
formating to be used.
See parameter tables at Data.GetLine Method.

©2022 by Nanosurf, all rights reserved

Object Reference 265

Example

get topography of scan line 5 with plane fit filter active and in [m
scanl i ne = obj Scan. GetLine(0,1,5,2,1)

get user input signal of current scan line, no filter as 16bit val ues
scanl i ne = obj Scan. GetLi ne(0, 5, obj Scan. Currentline, 0, 0)

See also

Property Lines
Method Start, Currentline

7.10.2.5 Scan::ImageSize
Sets width and height of a scan frame.
Syntax

scan.Image Size (width,height)

Argument
Paramete [Type Description
;
width double |Width of the image frame in meter
height double Height of the image frame in meter

Remarks

This method sets the width and height of a scan frame with one call. The difference to
setting the size by the properties ImageWidth and ImageHeight is that no intermediate
tip movement is performed between the two property call and value rounding problems
are avoided better for small scan frame sizes.

For more detailed description of the arguments see ImageWidth and ImageHeight
property.

Example

set scan frame to 100nm
obj Scan. | mageW dth = 100e-9
obj Scan. | mageHei ght = 100e-9

better is using | mgeSize method
obj Scan. | mageSi ze 100e-9, 100e-9

©2022 by Nanosurf, all rights reserved

266

Script Programmers Manual

See also

Property ImageWidth, ImageHeight

7.10.2.6 Scan::IsCapturing

Returns if a capture is pending or not.

Syntax

flag = scan.IsCapturing

Result

Result Type Description

flag Boolean Returns True if a capture is pending
Remarks

This method is returing Tr ue if a capture is pending.

Example

I f obj Scan.|sCapturing Then
obj Scan. St opCapt ure
End I f

See also

Method StartCapture, StopCapture

7.10.2.7 Scan::IsPaused

Returns if a scan is in paused or not.
Syntax

flag = scan.IsPaused
Result

Result Type Description

flag Boolean Returns True if imaging is in process

©2022 by Nanosurf, all rights reserved

Object Reference

Remarks

This method is returning Tr ue if a scan is currently paused.

Example
" neasure a frame
obj Scan. St art FrameUp

pause process
obj Scan. Pause

' do sonmet hing

measure a frane
obj Scan. St art FrameUp

See also

Method Pause, StartFrameUp, StartFrameDown, Start

7.10.2.8 Scan::IsScanning

Returns if a scan is in process or not.
Syntax

flag = scan.IsScanning
Result

Result Type Description

flag Boolean Returns True if imaging is in process

Remarks

This method is returning Tr ue if @ scan is currently running.

Example

measure i nage
obj Scan. St art FrameUp
Do Wil e obj Scan.|sScanning : Loop

copy i mage date
obj Scan. Start Capture

See also

Method StartFrameUp, StartFrameDown, Start

267

©2022 by Nanosurf, all rights reserved

268 Script Programmers Manual

7.10.2.9 Scan::IsScanningPrescan

Returns if a Prescan is in process or not.
Syntax

flag = scan.IsScanningPrescan
Result

Result Type Description

flag Boolean Returns True if imaging is in process

Remarks

This method is returning Tr ue if a Prescan is currently running.

Example

measure i nage
obj Scan. Start Prescan
Do Wil e obj Scan. |sScanni ngPrescan : Loop

copy i mge data
obj Scan. St art Capture

See also

Method StartPrescan, StartFrameDown, Start

7.10.2.10 Scan::IsSlopeCorrectionRunning

Returns if a slope correction process is running or not.

Syntax
flag = scan.IsSlopeCorrectionRunning
Result

Result Type Description

flag Boolean Returns Tr ue if a slope correction is running

Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 269

This method is returning Tr ue if a scan is currently running.

Example

sl ope correction
obj Scan. Start Sl opeCorrection
Do Wil e obj Scan.|sSl opeCorrecti onRunning : Loop

See also

Method StartSlopeCorrection

7.10.2.11 Scan::Pause
Pause continuous imaging of scan frames or just single scan frames.

Syntax
scan.Pause

Remarks

This method pauses the continuous imaging process of scan frames as well as of
single frames (up and down).

A paused imaging process can be resumed by calling Start or the corresponding
StartFrameUp or StartFrameDown functions.

Example

prepare scan
obj Scan. | mageSi ze 2e-6, 2e-6
obj Scan. Scantime = 0.7

start scan
obj Scan. St art

pause i medi ately
obj Scan. Pause

restart
obj Scan. St art

See also
Method IsPaused, Start, StartFrameUp, StartFrameDown

7.10.2.12 Scan::ShowWindow

Defines the display style of the imaging window.

Syntax

©2022 by Nanosurf, all rights reserved

270 Script Programmers Manual

scan.ShowWindow(style)
Arguments
Argument Type Description
style short Visibility style number
Result
None.
Remarks
The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example
obj Scan. ShowW ndow(0) ' hide the imagi ng wi ndow

See also

None.
Version info

Software v1.4.0 or later

7.10.2.13 Scan::Start
Starts continuous imaging of scan frames.

Syntax
scan.Start

Remarks

This method is starting the continuous imaging process of scan frames. Scanning is
only finished by the method Stop.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning. Scan frame Property Scanmode defines
how to proceed after a completed scan frame. A call to StartCapture creates a new
document after the current frame is finished.

Operating Mode settings and Z Feedback controller settings should be set to reasonable
values prior imaging but can be adjusted also at any time during the imaging. Prior to be

©2022 by Nanosurf, all rights reserved

Object Reference 271

able to scan an z approach should be performed successfully.

To scan single frames use method StartFrameUp or StartFrameDown.

Example

prepare scan
obj Scan. | mageSi ze 2e-6, 2e-6
obj Scan. Scantime = 0.7

start scan
obj Scan. St art

do something else ...

finish i mediately
obj Scan. St op

See also

Property Scanmode
Method Stop, StartFrameUp, StartFrameDown
Class Approach, OperatingMode, ZController

7.10.2.14 Scan::StartCapture

Create a new image document.
Syntax

scan.StartCapture
Remarks

This method copies the measured data to a new image document. If a scanning
process is running at the time StartCapture is called a new image document is
created each time a frame is measured.

A pending capture can be canceled with StopCapture. If a capture is pending read
method IsCapturing.

Example

start imging
obj Scan. St art FrameUp

prepare i mage copy
obj Scan. St art Capture

wait until copy is taken at end of frame
Do Wil e obj Scan.|sCapturing : Loop

See also

©2022 by Nanosurf, all rights reserved

272 Script Programmers Manual

Method StopCapture, IsCapturing
Method Application.SaveDocument

7.10.2.15 Scan::StartFrameDown

Starts a single down frame image
Syntax
scan.StartFrameDown

Remarks

This method is starting a single image starting from the top to the bottom. During the
scan process IsScanning is True and if StartCapturing is called during the frame a
new document is created after the scan frame is finished. At the end the tip is moved to

the center of the image.

The size and other properties of a scan frame should be predefined prior the start but

can be changed anytime also during scanning.

Prior to be able to scan a z-approach should be performed successfully.

Example

prepare scan
obj Scan. | mnageSi ze 2e-6, 2e-6
obj Scan. Scantime = 0.7

measure i mage
obj Scan. St art Fr ameDown

Do Wil e obj Scan.IsScanning : Loop

copy i mage date
obj Scan. St art Capture

See also

Method IsScanning, StartFrameUp
Class Approach

7.10.2.16 Scan::StartFrameUp

Starts a single up frame image

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 273

scan.StartFrameUp

Remarks

This method is starting a single image starting from the bottom to the top. During the
scan process IsScanning is True and if StartCapturing is called during the frame a
new document is created after the scan frame is finished. At the end the tip is moved to
the center of the image.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning.

Prior to be able to scan a z-approach should be performed successfully.
Example
prepare scan
obj Scan. | mageSi ze 2e-6, 2e-6
obj Scan. Scantinme = 0.7
measure i mage
obj Scan. St art FrameUp

Do Wil e obj Scan.|sScanning : Loop

copy i mage date
obj Scan. Start Capture

See also

Method IsScanning, StartFrameDown
Class Approach

7.10.2.17 Scan::StartPrescan

Starts a single up frame image
Syntax
scan.StartScanPrescan

Remarks

This method is starting a single Prescan image starting from the bottom to the top.
During the scan process IsScanningPrescan is True and if StartCapturing is called

during the frame a new document is created after the scan frame is finished. At the end
the tip is moved to the center of the image.

The size and other properties of a scan frame should be predefined prior the start.

©2022 by Nanosurf, all rights reserved

274 Script Programmers Manual

Prior to be able to scan a z-approach should be performed successfully.

Example

prepare scan

obj Scan. | mageSi ze 2e-6, 2e-6

obj Scan. Scantime = 0.7
obj Scan. PrescanSpeedup =

measure i nmage
obj Scan. St art ScanPrescan

Do Wil e obj Scan. | sScanni ngPrescan :

copy i nmage date
obj Scan. St art Capture

See also

Method IsScanningPrescan

7.10.2.18 Scan::StopPrescan

Stops Prescan imaging immediately.

Syntax
scan.StopPrescan

Remarks

every 8th line is scanned

Loop

This method stops any Prescan process immediately after the current scan line is
finished. The tip is moved to the center of the image.

A possible pending capture flag is also aborted and no document is created.

Example

start scan
obj Scan. Start Prescan

do something else ..

finish i mediately
obj Scan. St opPr escan

See also
Method Start, StartPrescan

7.10.2.19 Scan::StartSlopeCorrection

Starts the slope correction

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 275

scan.StartSlopeCorrection
Remarks

This method is starting the X/ Y slope correction. During the slope correction process
IsSlopeCorrectionRunning is True.

Example

sl ope correction
obj Scan. Start Sl opeCorrection
Do Wil e obj Scan.|sSl opeCorrectionRunning : Loop

See also

Method IsSlopeCorrectionRunning

7.10.2.20 Scan::Stop
Stops imaging immediately.
Syntax
scan.Stop

Remarks

This method stops any scan process immediately after the current scan line is finished.
The tip is moved to the center of the image.

A possible pending capture flag is also aborted and no document is created.

Example

start scan
obj Scan. Start

do something else ...

finish imedately
obj Scan. St op

See also
Method Start, StartFrameUp, StartFrameDown

7.10.2.21 Scan::StopCapture
Cancel a pending capture

Syntax

©2022 by Nanosurf, all rights reserved

276 Script Programmers Manual

scan.StopCapture
Remarks

This method cancel a pending capture. If a capture is pending read method
IsCapturing.

Example

start imaging
obj Scan. St art FrameUp

prepare i mage copy
obj Scan. St art Capture

do somet hi ng

I f obj Scan.|sCapturing Then
obj Scan. St opCapt ure
End If

See also

Method StartCapture, IsCapturing

7.11 ScanHead
The ScanHead class handles the scan head subsystem.

A object pointer to this class is provided by the Application.ScanHead object property.

Table of properties for ScanHead class:

Property name Purpose

HeadName Get the name of the current attached scan head
HeadlD Get the ID number of the current attached scan head
AFMSensorStatus Get the AFM sensor status

ApproachMotorStatus Get the approach motor status

DetectorlLateralPos Get the detectors lateral position
DetectorNormalPos Get the detectors normal position

LaserPowerMode Get the mode of the laser power measurement
LaserPower Get the laser power normalized

LaserPowerAbsolute Get the laser power as absolute value in [W]

©2022 by Nanosurf, all rights reserved

Object Reference 277

LaserPowerCurrent

Get the laser power as absolute value in [A]

ScanHead::IsLaserControlable

Get the information wether the laser in controlable(On/
Off) or not

ScanHead::LaserOn

Get and set the readout laser

ScanHead::LaserSetpoint

Get and set the readout laser setpoint

ScanHead::IsExcitationLaserControlla|Get the information wether the excitation laser is

ble

available and controlable(On/Off) or not

ScanHead::ExcitationLaserOn

Get and set the excitation laser setpoint

ScanHead::ExcitationLaserSetpoint

Get and set the excitation laser setpoint

STMSensorStatus

Get the STM sensor status

DeflectionUnitMode

Defines the unit of deflection signal

Cantilever

Defines the selected cantilever by Index position

CantileverByGUID

Defines the selected cantilever by its GUID number

CurrentDeflectionZCompensation

Defines the current Z compensation.

CurrentDeflection

Defines the current active deflection sensitivity

CurrentSpringConst Defines the current active spring constant used to
calculate the deflection force

InvertedUserOutputl Defines the output polarity of the user outputl

InvertedUserOutput2 Defines the output polarity of the user outputl

ApproachMotorMode Get the type of the approach motor

AppraochMotorPosition

Get the position of the approach motor

DeflectionCalibration

Retrieve a object pointer to the Deflection calibration
wizard class

ThermalTuning

Retrieve a object pointer to the Thermal Tuning class

Table of methods for ScanHead class:

Method name

Purpose

AdjustDetectorNormalOffset

Readjust the cantilever deflection offset

IsApproachMotorStatusDataValid

Returns "TRUE" if a data request is valid

IsDetectorStatusDataValid

Returns "TRUE" if a data request is valid

IsSensorStatusDataValid

Returns "TRUE" if a data request is valid

TriggerApproachMotorStatus

Request asynchronous data

TriggerDetectorStatus

Request asynchronous data

©2022 by Nanosurf, all rights reserved

278

Script Programmers Manual

7.11.1

7.11.1.1

7.11.1.2

TriggerSensorStatus

Request asynchronous data

GetCantileverProperty

Get a property value of the active cantilever

SetCantileverProperty

Set a property value of the active cantilever

GetCalibrationSignalMax

Get the maximal calibration value of a signal

SetCalibrationSignalMax

Set a new value to a signal calibration

GetCalibrationSignalName

Get the name of a signal

SetCalibrationSignalName

Set a new name to a signal

GetCalibrationSignalUnit

Get the the unit a signal

SetCalibrationSignalUnit

Set a new unit to a signal

GetAFMSensorStatusMeterRange

Read the various sensor signal status meter range values

GetApproachMotorStatusMeterRange

Read the various approach motor status meter range
values

Properties

ScanHead::STMSensorStatus
Get the STM sensor status.

Syntax

scanhead.STMSensorStatus [read only]

Argument

ParameteType Description
;

value DOUBLE Sensor status in [A]

Remarks
None

See also
None

ScanHead::LaserPowerMode

Get the laser power.
Syntax

scanhead.LaserPowerMode [read only]

©2022 by Nanosurf, all rights reserved

Object Reference 279

Argument

ParameteType Description
r

value LONG Laser Power Mbde_Undefined = 0O,
Laser Power Mode_LaserDrive = 1,
Laser Power Mode_Laser Power = 2,

Laser Power Mode_Det ect or |l ndensity = 3,

Remarks

This property returns the mode of the laser power measurement unit in the scan head
currently attached.

In the LaserDrive mode the laser power monitors the laser's electrical drive.
In the LaserPower mode the laser power monitors the real laser optical power.
In the DetectorSensitivity mode the laser power monitors the sum signal of the detector.

See also
LaserPower, LaserPowerAbsolute, LaserPowerCurrent

7.11.1.3 ScanHead::LaserPowerCurrent
Get the laser power.

Syntax
scanhead.LaserPowerCurrent [read only]

Argument

ParameteType Description
r

value DOUBLE Laser power in [A]

Remarks

The current optical laser power can be monitored on some scan heads. If this is
possible this property returns the energy currently the laser is emitting in [A].

If the laser power readout is not supported then the returned value is negative.

See also
LaserPowerMode, LaserPower, LaserPowerAbsolute

©2022 by Nanosurf, all rights reserved

280

Script Programmers Manual

7.11.1.4

7.11.1.5

ScanHead::LaserPowerAbsolute
Get the laser power.

Syntax
scanhead.LaserPowerAbsolute [read only]

Argument

ParameteType Description
r

value DOUBLE Laser power in [W]

Remarks

The current optical laser power can be monitored on some scan heads. If this is
possible this property returns the energy currently the laser is emitting in [W].

If the laser power readout is not supported then the returned value is negative.

See also
LaserPowerMode, LaserPower, LaserPowerCurrent

ScanHead::LaserPower
Get the laser power.

Syntax
scanhead.LaserPower [read only]

Argument
ParameteType Description
r
value DOUBLE Laser power [0.0 .. +1.0]

Remarks

This property monitors the laser power in the scan head and reports it as a normalized
value.

Depending on the scan head the laser power monitors the laser electrical drive power or
the laser optical power.

A small value means that the electronics reduce the laser energy to get a fix amount of
light onto the detector.

If the laser power signal is high the laser has to be driven with large power in order to get
a fix amount of light onto the detector.

©2022 by Nanosurf, all rights reserved

Object Reference 281

See also
LaserPowerMode, LaserPowerAbsolute, LaserPowerCurrent

7.11.1.6 ScanHead::IsLaserControlable
Says if the laser is controlable.

Syntax
scanhead.IsLaserControlable [read only]
Argument

ParameteType Description
r

value BOOL Says if the laser can be truned on and off

Remarks
This property tells the user if the connected device/scanhead allows to turn on or off the
laser.

See also

ScanHead::LaserOn

7.11.1.7 ScanHead::LaserOn

Tells if the readout laser is ON or OFF.
Turns the readout laser ON or OFF.

Syntax
objScanhead.LaserOn = TRUE or FALSE

value = objScanhead.LaserOn

Argument

ParameteType Description
r

value BOOL TRUE if ON FALSE of OFF

Remarks

none

©2022 by Nanosurf, all rights reserved

282 Script Programmers Manual

See also

ScanHead::IsLaserControlable

7.11.1.8 ScanHead::LaserSetpoint
Get or set the readout laser setpoint.

Syntax
value = objScanhead.LaserSetpoint

objScanhead.LaserSetpoint = newValue

Argument
ParameteType Description
r
value DOUBLE Defines the setpoint of the readout laser in watt [W]

Remarks
This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

See also
None

7.11.1.9 ScanHead::IsExcitationLaserControllable
Tells if the excitation laser is available and controllable.

Syntax
value = objScanhead.IsExcitationLaserControllable

Argument
ParameteType Description
;

value BOOL Tells if the excitation laser is available and controllable(ON/OFF and
setpoint)

Remarks
This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

©2022 by Nanosurf, all rights reserved

Object Reference

See also
None

7.11.1.10 ScanHead::ExcitationLaserOn

Tells if the excitation laser is ON or OFF.
Turns the excitation laser ON or OFF.

Syntax
objScanhead.ExcitationLaserOn = TRUE or FALSE

value = objScanhead.ExcitationLaserOn

Argument

ParameteType Description
r

value BOOL TRUE if ON FALSE of OFF

Remarks
This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

See also
None

7.11.1.11 ScanHead::ExcitationLaserSetpoint
Get or set the excitation laser setpoint.

Syntax
value = objScanhead.ExcitationLaserSetpoint

objScanhead.ExcitationLaserSetpoint = newValue
Argument
ParameteType Description
r

Setpoint DOUBLE Defines the setpoint of the excitation laser in watt [W]
value

Remarks
This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

283

©2022 by Nanosurf, all rights reserved

284 Script Programmers Manual

See also
None

7.11.1.12 ScanHead::HeadName
Get the name of the current attached scan head

Syntax
scanhead.HeadName [read only]
Argument

ParameteType Description
r

value String Name of the scan head

Remarks

The controller detects the attached scan head and assign to it a name. This name can
be read out by this property.

If no scan head or a unknown scan head is attached it returns "undefined".

See also
HeadID

7.11.1.13 ScanHead::HeadlD
Get the ID number of the current attached scan head

Syntax
scanhead.HeadID [read only]
Argument

ParameteType Description
r

value LONG Head_NC = 0,
Head_Unknown = 1
Head_EasyscanSTM = 2,
Head_EasyscanAFM = 9,
Head_Nani t eAFM = 12,
Head Fl exAFM = 14,
Head LensAFM = 15,

Remarks

The controller detects the attached scan head and assign to it ID number. This ID
number can be read out by this property.

©2022 by Nanosurf, all rights reserved

Object Reference

See also
HeadName

7.11.1.14 ScanHead::DetectorNormalPos
Get the detectors normal position.

Syntax
scanhead.DetectorNormalPos [read only]

Argument

ParameteType Description
r

value DOUBLE Detector normal position [-1.0 .. +1.0]

Remarks
None

See also
None

7.11.1.15 ScanHead::DetectorLateralPos
Get the detectors lateral position.

Syntax
scanhead.DetectorLateralPos [read only]

Argument

ParameteType Description
r

value DOUBLE Detector lateral position [-1.0 .. +1.0]

Remarks
None

See also
None

285

©2022 by Nanosurf, all rights reserved

286 Script Programmers Manual

7.11.1.16 ScanHead::DeflectionUnitMode
Defines used unit for the deflection signal

Syntax
scanhead.DeflectionUnitMode [= index]

Argument

Argument Type Description

index long Defines the unit of the deflection signal.

Remarks
For Static Force Mode AFM different signal units could be of interest. How the
deflection signal is displayed in the charts are defined by this property.

The following mode indexes are defined:

Def Uni t Mode_V
Def Uni t Mode_m
Def Uni t Mode_N

I g
NP o

See also
objZCtrl.SetPointForceUnitMode

7.11.1.17 ScanHead::CurrentSpringConst
Get/Set the currently used spring const value

Syntax
scanhead.CurrentSpringConst

Argument

ParameteType Description
r
value DOUBLE Spring constant in [N/m]

Remarks
This property handles the actual spring constant calibration value used by the software

to calculate the deflection force in [N].
The spring constant of the actual cantilever is predefined by the cantilever browser

©2022 by Nanosurf, all rights reserved

Object Reference 287

database. For high precision measurements this calibration is not accurate enough
because the manufacturing tolerances of cantilevers are very large.

Therefore the software provides in the SPM Parameter section Tip/Probe dialog a input
field where a more accurate value can be entered.

The actual spring constant measurement can be done by the ThermalTuning dialog with
a C3000.

See also
CurrentDeflection

7.11.1.18 ScanHead::CurrentDeflectionZCompensation
Get/Set the current deflection sensitivity value

Syntax
scanhead.CurrentDeflectionZCompensation
Argument

ParameteType Description
r

value DOUBLE Deflection Z compensation [- 2.0 .. +2.0]

Remarks

This property changes the actual compensation value used for Z-Axis position coupling
suppression of the Deflection signal.

If a scan head calibration file is loaded this value is set to the files default value.

See also

7.11.1.19 ScanHead::CurrentDeflection
Get/Set the current deflection sensitivity value

Syntax
scanhead.CurrentDeflection
Argument

ParameteType Description
r

©2022 by Nanosurf, all rights reserved

288

Script Programmers Manual

value DOUBLE Deflection sensitivity in [m/V]

Remarks

This property handles the actual deflection sensitivity calibration value used by the
software to calculate the deflection in [m].

The deflection sensitivity is predefined by the scan head calibration file. For high
precision measurements this calibration is not accurate enough

because the deflection sensitivity is also defined by the actual mounted cantilever and
the actual set laser position on the cantilever.

Therefore the software provides in the SPM Parameter section Tip/Probe dialog a input
field where a more accurate value can be entered.

The deflection sensitivity is measured by a F/z-Spectroscopy on a hard surface and by
analyzing the deflection slope.

The deflection sensitivity calibration wizard in the software can be used to automate this
step.

See also

CurrentSpringConst

7.11.1.20 ScanHead::CantileverByGUID

Returns or set the cantilever type mounted in the scan head.
Syntax

scanhead.CantileverByGUID [= indeX]

Setting

Argument Type Description

index long Defines which cantilever is mounted in the scan head.
Remarks

For AFM different type of cantilevers can be used with different mechanical properties
as stiffness or resonance frequency. This property tells the software which cantilever
the user has mounted.

The application stores each cantilever definition in a database. It is referenced by a
global unigue ID number the GUID. If the script knows this GUID it can be used to
select a specific cantilever without knowing its index position in the list of cantilevers as
it is with the Cantilever Property.

©2022 by Nanosurf, all rights reserved

Object Reference 289

Some cantilever are Known Cantilever and others are User Defined Cantilever. Known
Cantilever are has fixed predefined GUIDs defined by Nanosurf. User Defined
Cantilevers get their GUID at the time a user create a new Cantilever entry in the
database.

Here's a list of predefined Known Cantilever and their GUID:

Manuf acturer: Anasys Instrunents

Nane: (€U D:

AN2- 200 {BD61D124- 8350- 4464- BFE4- 1D8A156E4913}
GA-1 {9E2BA28D- D843- 41bf - 8F62- 05502B3EDB18}
Manuf act urer: AppNano

ACL- A { ABB75273- 9543- 431a- B681- C79B533DDIE6G}
ANSCM {40AEA787- 942C- 4d48- A389- DA81571F009C}
SI CON- A { F7TA339A7- E29F- 42a9- B7AA- D69C54363B76}
Manuf act urer: Budget Sensors

Cont Al -G { ED5A15E6- D3B0- 4e64- 8C50- 809335D3E143}
Mul ti 75E- G {9593403B- A476- 49a9- AA1F- 9C3AEDAC0178}
Mul ti 75M G {03D0715C A520- 4976- ASE2- 4FC3078E3821}
Mul ti 75A - G {443A2EDC- 5C9C- 4d60- 843F- C6688BEALDEA}
Tapl90Al - G {041FB8OE- A179- 4170- B5A4- AAEA1CO0A965}
Manuf act urer: Nanosensors

CONTR {89E92173- 96FB- 4f f 9- 94D8- 42296D00D980}
CONTSCPt {1E95D12B- 1DDB- 4ace- B3AF- BEQCOD52D4FC}
EFMR {986305AC- 64B5- 462e- B37E- 6BD5AE447BE3}
LFMR { C61FCA2C- 6D5D- 4105- 9FDE- 640D263E229F}
MFMR {9499F49F- 920F- 47ec- 80B6- 883F683FF056}
NCLR {62633FD4- 0555- 4cee- ASB4- B82F4CEFBB48}
PPP- FMR { EBA2B75C- AA94- 4451- AD36- 1388CDABF5E8}
XYNCHR { DD3DFE39- 455E- 40al- 801E- 5D5B14CE4080}

Attention: For each cantilever type only some operating modes are useful. Set
OperatingMode accordingly.

For more information please refer to the Nanosurf Software Reference Manual.

Example

enabl e dynam ¢ AFM and use NCLR Lever
obj OpMode. Oper ati ngMode = 3
obj ScanHead. Canti | ever ByGUI D = " {62633FD4- 0555- 4cee- ABB4- B82F4CEFBB48} "

See also

Property OperatingMode

©2022 by Nanosurf, all rights reserved

290 Script Programmers Manual

7.11.1.21 ScanHead::Cantilever

Returns or set the cantilever type mounted in the scan head.
Syntax
scanhead.Cantilever [=index]

Setting

Argument Type Description

index long Defines which cantilever is mounted in the scan head.

Remarks

For AFM different type of cantilevers can be used with different mechanical properties
as stiffness or resonance frequency. This property tells the software which cantilever
the user has mounted.

The cantilevers are defined in a list by the dialog "Config Cantilevers types" in the menu
"Options". From top down to the end of list each definition has its index number. Start
with index 0. This index number is used with this property.

The software then handles the details about them and adjust the internal microscope
electronics accordingly

Attention: For each cantilever type only some operating modes are useful. Set
OperatingMode accordingly.

For more information please refer to the Nanosurf Software Reference Manual.

Example

enabl e dynam ¢ AFM and use NCLR Lever
obj OpMode. Oper ati ngMode = 3

obj ScanHead. Cantil ever =1
See also
Property OperatingMode

7.11.1.22 ScanHead::AprroachMotorMode
Get the type of the approach motor.

Syntax
value = scanhead.ApproachMotorMode

©2022 by Nanosurf, all rights reserved

Object Reference

Argument

ParameteType
r

value LONG

Remarks
none

See also

Description

NotDefined =0
LimitSwitches =
PositionSensor

NoApproachStatus

I~

21
=3

7.11.1.23 ScanHead::ApproachMotorStatus
Get the approach motor status.

Syntax

scanhead.ApproachMotorStatus [read only]

Argument
ParameteType
r

state LONG

Remarks
None

See also
None

Description

LimtStatus_FAIL

Li m t St at us_ ERROR
LimtStatus_NC

Li m t St at us_MAXOUT
LimtStatus_ M NN

Li mi t St at us_| NRANGE

Li mi t St at us_NOTDEFI NED
Li mi t St at us_NOTDEFI NED

6"
5
4
3
o
1
o
1,

291

©2022 by Nanosurf, all rights reserved

292

Script Programmers Manual

7.11.1.24 ScanHead::ApproachMotorPosition

Get the position of the approach motor.

Syntax
value = scanhead.ApproachMotorPosition
Argument

ParameteType Description
r

value DOUBLE Position in meter

Remarks
none

See also

7.11.1.25 ScanHead::AFMSensorStatus

Get the AFM sensor status.

Syntax
scanhead.AFMSensorStatus [read only]

Argument
ParameteType Description
r

value LONG Sensor St at us_LASER_TOLOW
Sensor St at us_LASER_FAI L
Sensor St at us_LASER_TOHI GH
Sensor St at us_LASER_COK
Sensor St at us_NOTDEFI NED

Remarks
None

See also
None

P RwhsA

©2022 by Nanosurf, all rights reserved

Object Reference

7.11.1.26 ScanHead::InvertedUserOutputl

Tells if the user output 1 is inverted or not.
Turns the inversion on user output 1 ON or OFF.

Syntax
objScanhead.InvertedUserOutputl = TRUE or FALSE

value = objScanhead.InvertedUserOutputl

Argument

ParameteType Description
r

value BOOL TRUE if inverted FALSE if not OFF

Remarks

none

See also
none

7.11.1.27 ScanHead::InvertedUserOutput2

Tells if the user output 2 is inverted or not.
Turns the inversion on user output 1 ON or OFF.

Syntax
objScanhead.InvertedUserOutput2 = TRUE or FALSE

value = objScanhead.InvertedUserOutput2

Argument

ParameteType Description
r

value BOOL TRUE if inverted FALSE if not OFF

Remarks
none

293

©2022 by Nanosurf, all rights reserved

294

Script Programmers Manual

See also
none

7.11.1.29 ScanHead::ThermalTuning
Returns a dispatch pointer to the sub class ThermalTuning. This property is read only.

Syntax
application.ThermalTuning [read only]

Result

The ThermalTuning property is returning a pointer to the IDispatch interface of the

ThermalTuning object.

Remarks

Only one single instance exists of ThermalTuning object. All successive read of this

property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to

do this.

Example

create objects
Di
Di
Di

m obj Ther mal Tune : Set obj Ther mal Tune

vari abl es
Di m current Aver ageDat a
Di m bl ockDat a

Di m frequencylLi st

Di m shoFi t Resul t

Di m shoFi t Curve

Di m num terations

Di m maxlterations
Dim cantil everLength
Dim cantil everWdth
Di m envDensity

Di m envVi scosity

Di m spri ngConst ant

num terations = 0
mexl|terations = 1000
cantileverLength = 0.000225
cantileverWdth = 0.000038
envDensity = 1.225

envVi scosity = 0.0000185
springConstant = 0

setup thermal tune

obj Ther mal Tune. FreqBandUpper Bound 319000 '

m obj App : Set objApp = SPM Application
m obj Scanhead : Set obj Scanhead = obj App. Scanhead
obj Scanhead. Ther mal Tuni ng

Hz

©2022 by Nanosurf, all rights reserved

Object Reference 295

obj Ther mal Tune. FreqResol ution 45 ' Hz

obj Ther mal Tune. Bl ockCount 0 ' continuous

obj Ther mal Tune. Aver ageType 1 ' Proportional Wei ght

obj Ther mal Tune. Cantil ever Tenperature 21 ' degrees cel sius

obj Ther mal Tune. FreqLower Bound 85000 ' Hz, fit |ower bound

obj Ther mal Tune. FreqUpper Bound 266000 ' Hz, fit upper bound

start capture
obj Ther mal Tune. Start

data acquisition and cal cul ation | oop
do while (numterations < maxlterations)
i f (obj Thermal Tune. Get Current Bl ockCount > 0) then
current Aver ageDat a = obj Ther mal Tune. Get Curr ent Aver age
bl ockDat a = obj Ther mal Tune. Get Bl ock(f al se)
frequencyLi st = obj Ther mal Tune. Get FrequencylLi st
shoFi t Result =
obj Ther mal Tune. Si npl eHar noni cOscFi t OnCurr ent Aver ageAndBounds
cal cul ate k
spri ngConstant =
obj Ther mal Tune. Cal cul at eSpri ngConst ant _Sader (canti |l everLength, cantileverW dth,
shoFi t Resul t (2), shoFitResult(3), envViscosity, envDensity)
end if
num terations = numterations + 1
| oop

stop capture
obj Ther mal Tune. st op

di splay result
MsgBox springConst ant

obj Ther mal Tune = nul : Set obj Thermal Tune= Not hi ng
obj App = nul : Set objApp = Nothing

See also

class ThermalTuning

7.11.2 Methods
7.11.2.1 ScanHead::AdjustDetectorNormalOffset

Starts the offset calibration process for the normal deflection.
Syntax
flag = scanhead.AdjustDetectorNormalOffset

Result

©2022 by Nanosurf, all rights reserved

296 Script Programmers Manual

Result Type Description

none none none
Remarks

This method starts the process to recalibrate the normal deflection offset to zero.

See also

Properties ScanHead::DetectorNormalPos

7.11.2.2 ScanHead::GetAFMSensorStatusMeterRange
Returns the normalized SignalMeter border value.

Syntax

value = objScanhead.GetAFMSensorStatusMeter(MeterID)

Argument

Paramete [Type Description

r

MeterlD [long ID of the Status Meter range to read out
Result

Result Type Description

value double The normalized value of the selected StatusMeterRange
Remarks

The GetAFMSensorStatusMeterRange() method returns the normalized value of a
selected signalmeter border value .

Available SignalMeter ID's are:

Si gnal Met er _M nRed

Si ghal Met er _M nOr ange
Si gnal Meter _M nGr een
Si gnal Met er _MaxG een
Si ghal Met er _MaxOr ange
Si gnal Met er _MaxRed

OAWNRFO

©2022 by Nanosurf, all rights reserved

Object Reference

297

See also

TechDoc "NSF SensorSignal Status Information Documentation”

7.11.2.3 ScanHead::GetCantileverProperty
Returns a property value of the current selected cantilever.
Syntax

value = objScanhead.GetCantileverProperty(propid)

Argument

Paramete [Type Description

r

proplD long ID of the property to read out
Result

Result Type Description

value double The value of the property
Remarks

The GetCantileverProperty() method returns a value of a selected cantilever
property.

Available properties are:

Cantil ever Prop_LeverLength =
Cantil ever Prop_LeverWdth =
Canti | ever Prop_Spri ngConst

Canti |l ever Prop_Ai r ResonanzeFrq
Canti | ever Prop_Ai r QFact or

Cantil ever Prop_Li qui dResonanzeFr g
Canti |l ever Prop_Li qui dQFact or =

I
OURWNRO

Example

MsgBox "Current cantilever's spring constant is " &
obj Scanhead. Get Canti |l ever Propery(2) & "N nf

See also

©2022 by Nanosurf, all rights reserved

298 Script Programmers Manual

ScanHead.SetCantileverProperty

7.11.2.4 ScanHead::GetCalibrationSignalMax
Returns the calibration value of the selected signal.
Syntax

value = objScanhead.GetCalibrationSignalMax(sigID)

Argument

Paramete [Type Description

r

sigID long ID of the signal to read out
Result

Result Type Description

value double The maximal calibration value of the signal

Remarks
The GetCalibrationSignalMax() method returns the calibration value of a signal.

Available signal ID's are:

Cal i bSi g XAxi s

CalibSig _YAxis

Cal i bSig ZAxi s

Cal i bSi g_Ti pCurrent

Cal i bSi g_Ti pVol t age

Cal i bSi g _ChO_Defl ection
Cal i bSi g_ChO_Anmp

Cal i bSi g_ChO_Phase

Cal i bSi g _ChO_Excitation

I T 1 T T I O | A 1 B
O~No Ok~ wWNEO

Example

MsgBox "Current Z-Axis Range is " &
2. 0*obj Scanhead. Get Cal i brati onSi gnal Max(2)*1. 0e6 & "unt

See also

ScanHead.SetCalibrationSignalMax

©2022 by Nanosurf, all rights reserved

Object Reference

7.11.2.5 ScanHead::SetCalibrationSignalMax
Sets the calibration value of the selected signal.
Syntax

ok = objScanhead.SetCalibrationSignalMax(sigID, value)

299

Argument

Paramete [Type Description

r

sigIlD long ID of the signal to read out

value double maximal signal value in it native unit
Result

Result Type Description

ok bool TRUE if the signal value could be set
Remarks

The SetCalibrationSignalMax() method sets the calibration value of a signal.

Available signal ID's are:

Cal i bSi g_XAxi s

Cal i bSi g_YAXi s

Cal i bSi g_ZAxi s

Cal i bSi g_Ti pCurrent

Cal i bSi g_Ti pVol t age

Cal i bSi g_ChO_Defl ection
Cal i bSi g_ChO_Anp

Cal i bSi g_ChO_Phase

Cal i bSi g _ChO_Excitation

| T 1 e I | A B |
O~NoOUh~wWNEO

Example

obj Scanhead. Set Cal i brati onSi gnal Max(5) = 2.5e-6 '[m

See also

ScanHead.GetCalibrationSignalMax

©2022 by Nanosurf, all rights reserved

300 Script Programmers Manual

7.11.2.6 ScanHead::GetCalibrationSignalName

Returns the name of the selected signal.

Syntax

value = objScanhead.GetCalibrationSignalName(sigID)

Argument

Paramete [Type Description

r

sigIlD long ID of the signal to read out
Result

Result Type Description

name string The name of the signal
Remarks

The GetCalibrationSignalName() method returns the name of a signal.

Available signal ID's are defined at ScanHead::GetCalibrationSignalMax

See also

ScanHead.SetCalibrationSignalMax

7.11.2.7 ScanHead::SetCalibrationSignalName

Sets the name of the selected signal.

Syntax

ok = objScanhead.SetCalibrationSignalName(siglD, name)

Argument

Paramete

Type

Description

©2022 by Nanosurf, all rights reserved

Object Reference

301

;
sigIlD long ID of the signal to read out
name string new name of the signal
Result
Result Type Description
ok bool TRUE if the signal name could be set
Remarks

The SetCalibrationSignalName() method sets the name of a signal.

Available signal ID's please see at ScanHead.GetCalibrationSignalMax

See also

ScanHead.GetCalibrationSignalMax

7.11.2.8 ScanHead::GetCalibrationSignalUnit

Returns the unit of the selected signal.

Syntax

value = objScanhead.GetCalibrationSignalUnit(sigID)

Argument

Paramete [Type Description

r

siglD long ID of the signal to read out
Result

Result Type Description

name string The unit of the signal
Remarks

©2022 by Nanosurf, all rights reserved

302 Script Programmers Manual

The GetCalibrationSignalUnit() method returns the unit of a signal.

Available signal ID's are defined at ScanHead::GetCalibrationSignalMax

See also

ScanHead::GetCalibrationSignalName

7.11.2.9 ScanHead::SetCalibrationSignalUnit

Sets the name of the selected signal.

Syntax

ok = objScanhead.SetCalibrationSignalUnit(sigID, unitname)

Argument

Paramete [Type Description

r

siglD long ID of the signal to read out

unitname [string new unit of the signal
Result

Result Type Description

ok bool TRUE if the signal unit could be set
Remarks

The SetCalibrationSignalUnit() method sets the unit of a signal.

Available signal ID's please see at ScanHead.GetCalibrationSignalMax

See also

ScanHead.GetCalibrationSignalMax

©2022 by Nanosurf, all rights reserved

Object Reference 303

7.11.2.10 ScanHead::IsApproachMotorStatusDataValid

Returns "TRUE" if a data request is valid.
Syntax

flag = scanhead.IsApproachMotorStatusDataValid
Result

Result Type Description

flag Boolean Returns True if the requested data is valid

Remarks
This method is returns Tr ue if the requested data is valid.

Example

start trigger
obj ScanHead. Tri gger Appr oachMbt or St at us

wait until async data is received
do while (obj ScanHead. | sApproachMot or St at usDat aValid = false) : |oop

MsgBox "" & obj ScanHead. Appr oachMot or St at us

See also

Properties ScanHead::ApproachMotorStatus
Method ScanHead:: TriggerApproachMotorStatusData

7.11.2.11 ScanHead::IsDetectorStatusDataValid

Returns "TRUE" if a data request is valid.
Syntax

flag = scanhead.IsDetectorStatusDataValid
Result

Result Type Description

flag Boolean Returns Tr ue if the requested data is valid

Remarks

©2022 by Nanosurf, all rights reserved

304 Script Programmers Manual

This method is returns Tr ue if the requested data is valid.

Example

start trigger
obj ScanHead. Tri gger Det ect or St at us

wait until async data is received
do while (obj ScanHead. |sDetector StatusDataValid = false) : |oop
MsgBox "" & obj ScanHead. Laser Power & " " & obj ScanHead. Det ect or Lateral Pos & "

& obj ScanHead. Det ect or Nor mal Pos

See also

Properties ScanHead::DetectorLateralPos, ScanHead::DetectorNormalPos,
ScanHead::LaserPower
Method ScanHead:: TriggerDetectorStatus

7.11.2.12 ScanHead::IsSensorStatusDataValid

Returns "TRUE" if a data request is valid.
Syntax

flag = scanhead.IsSensorStatusDataValid
Result

Result Type Description

flag Boolean Returns Tr ue if the requested data is valid

Remarks
This method is returns Tr ue if the requested data is valid.

Example

start trigger
obj ScanHead. Tri gger Sensor St at us

wait until async data is received
do while (obj ScanHead. | sSensor St atusDat aValid = false) : |oop

for STM use
MsgBox "" & obj ScanHead. STMSensor St at us

for AFM use

©2022 by Nanosurf, all rights reserved

Object Reference 305

MsgBox "" & obj ScanHead. AFMSensor St at us

See also

Properties ScanHead::AFMSensorStatus, ScanHead::STMSensorStatus
Method ScanHead::TriggerSensorStatus

7.11.2.13 ScanHead::SetCantileverProperty
Sets a property value of the current selected cantilever.
Syntax

bool = objScanhead.SetCantileverProperty(propid, value)

Argument
Paramete [Type Description
r
proplD long ID of the property to read out
value double new value for selected proplD
Result

Result Type Description
ok bool TRUE is the property could be set.
Remarks
The SetCantileverProperty() method sets a value of a selected cantilever property.

Available properties are:

Cantil ever Prop_LeverlLength =0,
Cantil everProp_LeverWdth =1,
Canti |l ever Prop_Spri ngConst = 2,
Canti | ever Prop_Ai r ResonanzeFr g = 3,
Canti |l ever Prop_Ai r QFact or = 4,
Canti |l ever Prop_Li qui dResonanzeFrq = 5,
Canti | ever Prop_Li qui dQFact or = 6,
Example
ok = obj Scanhead. Set Cantil everPropery(2, 0.1) ' [N n

©2022 by Nanosurf, all rights reserved

306 Script Programmers Manual

See also

GetCantileverProperty

7.11.2.14 ScanHead::TriggerApproachMotorStatus

Request asynchronous data.
Syntax

scanhead.TriggerApproachMotorStatus

Remarks

This method triggers the request to receive approach motor status data.
The IsApproachMotorStatusDataValid flag will be cleared and set to true once the data

has arrived.

Example

start trigger
obj ScanHead. Tri gger Appr oachMot or St at us

wait until async data is received
do whil e (obj ScanHead. | sApproachMot or St at usDat aVal i d

MsgBox "" & obj ScanHead. Appr oachMot or St at us

See also

Properties ScanHead::ApproachMotorStatus
Method ScanHead::IsApproachMotorStatusDataValid

7.11.2.15 ScanHead::TriggerDetectorStatus

Request asynchronous data.
Syntax

scanhead.TriggerDetectorStatus

Remarks

= false) : loop

©2022 by Nanosurf, all rights reserved

Object Reference 307

This method triggers the request to receive detector status data.
The IsDetectorStatusDataValid flag will be cleared and set to true once the data has
arrived.

Example

start trigger
obj ScanHead. Tri gger Det ect or St at us

wait until async data is received
do while (obj ScanHead. | sDetector StatusDataValid = false) : |oop
MsgBox "" & obj ScanHead. Laser Power & " " & obj ScanHead. Det ectorLateral Pos & " "

& obj ScanHead. Det ect or Nor mal Pos

See also

Properties ScanHead::DetectorLateralPos, ScanHead::DetectorNormalPos,
ScanHead::LaserPower
Method ScanHead::IsDetectorStatusDataValid

7.11.2.16 ScanHead::TriggerSensorStatus

Request asynchronous data.
Syntax

scanhead.TriggerSensorStatus

Remarks

This method triggers the request to receive sensor status data.
The IsSensorStatusDataValid flag will be cleared and set to true once the data has
arrived.

Example

start trigger
obj ScanHead. Tri gger Sensor St at us

wait until async data is received
do while (obj ScanHead. | sSensor St atusDataValid = false) : |oop
for STM use

MsgBox "" & obj ScanHead. STMSensor St at us

for AFM use
MsgBox "" & obj ScanHead. AFMSensor St at us

©2022 by Nanosurf, all rights reserved

308

Script Programmers Manual

7.12

See also

Properties ScanHead::AFMSensorStatus, ScanHead::STMSensorStatus

Method ScanHead::IsSensorStatusDataValid

SignallO

The SignallO class handles the microscope's 10 subsystem.

A object pointer to this class is provided by the Application.SignallO object property.

Table of properties for SignallO class:

Property name

Purpose

EnableUserADCO Enable User ADCO
EnableUserADC1 Enable User ADC1
UserADCO Read the current ADC value
UserADC1 Read the current ADC value

ExcitationMode

Set the lever excitation modes

TipSignalMode Set the tip signal modes
User0CtriMode Set the user0 control mode
UserOlGain Set the user0 1 gain [0 .. 00]

UserOinputPol

Set the user0 input pol

User0OutputFlag

Set the user0 output flag

User0SetPoint

Set the userO set point

UserDACO User Output O

UserDAC1 User Output 1

MonitorOutO Defines the signal monitor on BNC Monitor 1 of the C3000
MonitorOut1 Defines the signal monitor on BNC Monitor 2 of the C3000
Isinstalled Returns if the Advanced Signal Module is installed or not.

©2022 by Nanosurf, all rights reserved

Object Reference

7.12.1 Properties
7.12.1.1 SignallO::EnableUserADCO
Enable or disable the UserADCO.

Syntax
signallO.EnableUserADCO [= state]
Argument

ParameteType Description
r

state BOOL Enable or disable the UserADCO.

Remarks
None

See also
None

7.12.1.2 SignallO::EnableUserADC1
Enable or disable the UserADC1.

Syntax
signallO.EnableUserADCL1 [= state]
Argument

ParameteType Description
r

state BOOL Enable or disable the UserADC1.

Remarks
None

See also
None

7.12.1.3 SignallO::ExcitationMode
Get or set the lever excitation mode.

Syntax
signallO.ExcitationMode [= mode]

309

©2022 by Nanosurf, all rights reserved

310 Script Programmers Manual

Argument

ParameteType Description
r

mode LONG Defines the lever excitation mode. See modes in the table below.

Remarks
Table of lever excitation mode values and description:

State No. |Name Description

0 LeverMode_InternalSource [Cantilever excitation is controlled by the Nanosurf
controller itself.

1 LeverMode_ExternalSource [Cantilever excitation is controlled by an external source

See also
None

7.12.1.5 SignallO::MonitorOut0
Selects the channel mapped to monitor O output.

Syntax
signallO.MonitorOutO [= channel]

Argument

Parameter Type Description
channel Long Get or set channel
Remarks

Channel table

Value Name
0 Static Value Reqister

Test Dynamic

Reserved

Debug

Main Input 1

Main Input 2

Axis Position Input X

Axis Position Input Y

Axis Position Input Z

Extra Input 1

Extra Input 2

Extra Input 3 or 4

OO |IN[O[O ™ [WN (|-

[EnN
o

[EY
[E

©2022 by Nanosurf, all rights reserved

Object Reference

12 Approach
13 Position Output X
14 Position Output Y
15 Position Output Z
16 Mixed Output 3
17 Mixed Output 4
18 Tip Current Input
32 Z-Controller Output
33 Ramp Generator Approach
34 Ramp Generator Scan X
35 Ramp Generator Scan Y
36 Ramp Generator Scan Z
37 Ramp Generator Z-Controller
38 Ramp Generator Z-Direct
39 Ramp Generator Max-Z
40 Z-Controller Input Value
41 Z-Controller Error Value
42 Z-Controller PID Command
43 Z-Controller Sum Value
44 Z-Controller Limited Value
45 Axis Position Controller Output X
46 Axis Position Controller Output Y
47 Analyzer 1 Control Delta F
48 Analyzer 1 Control Amplitude
49 Analyzer 1 Phase
50 Analyzer 1 Amplitude
51 Analyzer 1 X
52 Analyzer 1Y
53 Analyzer 2 Control Delta F
54 Analyzer 2 Control Amplitude
55 Analyzer 2 Phase
56 Analyzer 2 Amplitude
57 Analyzer 2 X
58 Analyzer 2 Y
See also

SignallO::MonitorOutl

7.12.1.6 SignallO::MonitorOutl

Selects the channel mapped to monitor 1 output.

Syntax

signallO.MonitorOutl [= channel]

Argument

Parameter Type Description

311

©2022 by Nanosurf, all rights reserved

312

Script Programmers Manual

channel

Remarks

Long Get or set channel

Channel table

Value Name
0 Static Value Reqister
1 Test Dynamic
2 Reserved
3 Debug
4 Main Input 1
5 Main Input 2
6 Axis Position Input X
7 Axis Position Input Y
8 Axis Position Input Z
9 Extra Input 1
10 Extra Input 2
11 Extra Input 3 or 4
12 Approach
13 Position Qutput X
14 Position Output Y
15 Position Output Z
16 Mixed Output 3
17 Mixed Output 4
18 Tip Current Input
32 Z-Controller Output
33 Ramp Generator Approach
34 Ramp Generator Scan X
35 Ramp Generator Scan Y
36 Ramp Generator Scan Z
37 Ramp Generator Z-Controller
38 Ramp Generator Z-Direct
39 Ramp Generator Max-Z
40 Z-Controller Input Value
41 Z-Controller Error Value
42 Z-Controller PID Command
43 Z-Controller Sum Value
44 Z-Controller Limited Value
45 Axis Position Controller Output X
46 Axis Position Controller Output Y
47 Analyzer 1 Control Delta F
48 Analyzer 1 Control Amplitude
49 Analyzer 1 Phase
50 Analyzer 1 Amplitude
51 Analyzer 1 X
52 Analyzer 1Y
53 Analyzer 2 Control Delta F
54 Analyzer 2 Control Amplitude
55 Analyzer 2 Phase

©2022 by Nanosurf, all rights reserved

Object Reference 313

56 Analyzer 2 Amplitude
57 Analyzer 2 X
58 Analyzer 2 Y

See also

SignallO::MonitorOutO

7.12.1.7 SignallO::TipSignalMode
Get or set the tip signal mode.

Syntax
signallO.TipSignalMode [= mode]

Argument

ParameteType Description
;

mode LONG Defines the operating mode for lithography. See modes in the table below.

Remarks
Table of tip signal mode values and description:

State No. |Name Description

0 TipSig_CurrentSensinput Sets the tip signal to the input current measurement
level.

1 TipSig_VoltageOutput Sets the tip signal to the measured output wvoltage.

2 TipSig_DirectFeedtrough Establishes a direct connection between the “Tip-
Voltage” Input BNC connector and the cantilever.

See also
None

7.12.1.8 SignallO::UserOCtrIMode
Get or set the user0 controller mode.

Syntax
signallO.User0CtrIMode [= mode]
Argument

ParameteType Description
r

©2022 by Nanosurf, all rights reserved

314 Script Programmers Manual

mode LONG Defines the user 0 controller mode. See modes in the table below.

Remarks
Table of user 0 controller operation mode values and description:

State No. |Name Description

0 UserOCtrl_Off User 0 controller is off

1 UserOCtrl_On User 0 controller is on
See also

None

7.12.1.9 SignallO::UserOlGain
Returns or set the integral gain of the user 0 controller.

Syntax

signallO.UserOlGain [= gain]

Setting

Argument Type Description

gain double Defines the amplification of the accumulating sum of the difference
between input signal and set point value. Valid values are O ..
32767.
Remarks

The I-Gain is defining the amplification of sum of the difference between input signal
and the set point value. A higher amplification generates a faster response to a input
signal error. But a gain value too high can lead to oscillation of the z feedback loop and
amplifies also noise from the input signal.
A value of zero switch of the integral gain completely.

Example
signal 1 O User0l Gain = 2000

See also

Property

©2022 by Nanosurf, all rights reserved

Object Reference 315

7.12.1.10 SignallO::UserOlnputPol
Get or set the user0 input polarity.

Syntax
signallO.UserOInputPol [= pol]

Argument

ParameteType Description
r

pol LONG Defines the user0 input polarity. See modes in the table below.

Remarks
Table of user0 input polarities values and description:

State No. |Name Description

0 UserOInputPol_Pos Polarity is positive

1 UserOInputPol_Neg Polarity is negative
See also

None

7.12.1.11 SignallO::User0OOutputFlag
Get or set the user0 output flag.
Syntax
signallO.User0OutputFlag [= flag]
Argument

ParameteType Description
r

flag LONG Defines the user0 output flag. See modes in the table below.

Remarks
Table of user0 output flag values and description:

State No. |Name Description
0 UserOOutFlag_ Undefined
1 UserOOutFlag_AddToTipVolt

age

©2022 by Nanosurf, all rights reserved

316 Script Programmers Manual

See also
None

7.12.1.12 SignallO::User0SetPoint
Get or set the user0 set point.

Syntax
signallO.User0SetPoint [= setpoint]

Argument

ParameteType Description
r

setpoint DOUBLE Defines the user0 set point [-1.0 .. +1.0]

Remarks
None

See also
None

7.12.1.15 SignallO::UserDACO
Get or set the user DACO.

Syntax
signallO.UserDACO [= value]

Argument

ParameteType Description
r

value DOUBLE Defines the user DACO value.

Remarks
None

See also
None

©2022 by Nanosurf, all rights reserved

Object Reference 317

7.12.1.16 SignallO::UserDACL1
Get or set the user DAC1.

Syntax
signallO.UserDAC1 [= value]

Argument
ParameteType Description
r
value DOUBLE Defines the user DACL1 value.

Remarks

With C3000 the DAC1 value can only be set if the system.SystemStateldleDAC1Mode
is set to SysStateldleZ_AbsolutPos

See also
System.SystemStateldleDAC1Mode

7.13 Spec
The Spec class handles the microscope's spectroscopy subsystem.

Spectroscopy is a very powerful function to get physical sample properties. Also sample
modification is possible on certain material.

The basic principle of spectroscopy is to modulate a output signal and measure the
reaction of another signal. This results in a 2D line chart.

This is done at one position aver the surface or at different points along a line, then a 3D
chart is the result.

A set of properties are defining the modulation output, the start and end point of the
modulation, the modulation time and may more.

For more information about spectroscopy please refer to the Nanosurf Software
Reference Manual.

A spectroscopy is first prepared by defining all the properties and the call Start.
IsMeasuring is reporting if the measurement is in process. After the measurement
StartCapture can copy the result into a image document or GetLine extract the data
values.

Lithography or any other free tip movement can be done with StartMoveTipTo and
IsMoving.

A object pointer to this class is provided by the Application.Spec object property.

©2022 by Nanosurf, all rights reserved

318

Script Programmers Manual

Table of properties for Spec class:

Property name

Purpose

ActiveZController

Flag to select if the Z-Controller is stopped during a spectroscopy
measurement

AddUserOutCToZStartPosition

Returns or set a flag if AddUserOutCToZStartPosition is activated

AutoCapture

Get or set the flag if auto capture is active

AutoRecalibrateProbe

Obsolete: Use AutoRecalibrateProbelnterval instead

AutoRecalibrateProbelnterval

Get or set the interval of the auto recalibration

BwdModDataPoints

Number of data points taken during a backward measurement

BwdModulationMode

Backward modulation mode

BwdModulationRange

Backward modulation range

BwdModulationStopMode

Backward modulation stop mode

BwdModulationStopValue

Backward modulation stop value

BwdModulationTime

Speed of the backward measurement

BwdMowveSpeed

Speed of the backward measurement

BwdPauseDatapoints

Number of data points taken during a backward pause

BwdPauseMode

Z-Controller state during backward pause

BwdPauseTime

Backward pause time

BwdSamplingRate

Sampling rate of the backward measurement

CurrentModulationPhase

The current modulation phase within a spectroscopy

EnableRelative

In relative mode the modulation values are added to the current
output value

FwdModDatapoints

Number of data points taken during a forward measurement

FwdModulationMode

Forward modulation mode

FwdModulationRange

Forward modulation range

FwdModulationStopMode

Forward modulation stop mode

FwdModulationStopValue

Forward modulation stop value

FwdModulationTime

Speed of the forward measurement

FwdMoveSpeed

Speed of the forward measurement

FwdPauseDatapoints

Number of data points taken during a forward pause

FwdPauseMode

Z-Controller state during forward pause

FwdPauseTime

Forward pause time

FwdSamplingRate

Sampling rate of the forward measurement

©2022 by Nanosurf, all rights reserved

Object Reference 319

Min Min of dim N

Range Range of dim N

LineMin Min of line N

LinePoints Number of points of line N

LineRange Range of line N

ModulatedOutput Defines the output which is modulated during spectroscopy
ModuleLevel 0 = Standard, 1 = Advanced

PositionListCount

Number of spectroscopy positions

Repetition Repetition of measurement at each modulation point
RepetitionMode Select repetition mode
Sequence Number of modulation points between From and To position

SpecEndMode

Select whether the Z-Controller goes back active keeps its last Z -
position after a spectroscopy.

StartOffset

Start value of the measurement

SyncOutMode

Returns or selects the mode of the synchronization output

XY MowveSpeed Defines the speed of tip movement between modulation points
StartOffsetMoveSpeed Defines the speed of movement to the start offset position

Table of methods for Spec class:

Method name

Purpose

Currentline Retrieve the current spectroscopy sequence number
Getline Retrieve the data point values of a spectroscopy line
GetlLine2 Retrieve the data point values of a spectroscopy line
IsCapturing Retrieve the information whether a capture is prepared or not
IsMeasuring Return True if spectroscopy sequence is in process
IsMoving Return True if a tip movement is in process

ShowWindow Controls the visibility of the imaging window

Start Starts spectroscopy sequence

StartCapture

Prepare a data capture if measuring or do it immediately

StartMoweTipTo

Starts a tip movement to a destination position

Stop Stops spectroscopy sequence
StopCapture Clear a prepared data capture
Pause Pauses the spectroscopy.

©2022 by Nanosurf, all rights reserved

320 Script Programmers Manual

IsPaused Returns if the spec is paused

IsFwdModulation Returns if the spectroscopy process is in a certain state.
IsBwdModulation

IsFwdPausels

BwdPause

ResumelastPoint Continue the spectroscopy after pause at last measured point
ResumeNextPoint Continue the spectroscopy after pause at next point
ClearPositionList Clear the spectroscopy position list

AddPosition Add a spectroscopy position to the list of positions
AddPosition2 Add a spectroscopy position to the list of positions
AddPositions Add a list of spectroscopy position to the list of positions
ForceBaseLinePos Set the base line to a defined value

7.13.1 Properties

7.13.1.1 Spec::ActiveZController

Returns or set a flag to select if the Z-Controller is stopped during a spectroscopy
measurement

Syntax
spec.ActiveZController [= flag]
Setting

Argument Type Description

flag Boolean Set to True to keep Z-Controller active during a spectroscopy
measurement

Remarks

This flag selects if the Z-Controller is active during a spectroscopy measurement or
not.

During normal spectroscopy measurement the Z-Controller is stopped in order to keep
the tip position fixed during the measurement. In special cases it could be of interest to
keep the Z-Controller active an measure the influence of a modulation to the z-position.

ActiveZController can only be activated if ModulatedOutput is not set to ModOut_Z.

©2022 by Nanosurf, all rights reserved

Object Reference 321

If ActiveZController is activated the spectroscopy is measuring the SigTopography 1
too.

See also

Property ModulatedOutput, GetLine Method

Version info

Software v1.4.0 or later

7.13.1.3 Spec::AutoCapture

Returns or set a flag if AutoCapture is activated.

Syntax
spec.AutoCapture [=flag]
Setting

Argument Type Description

flag boolean Set to True AutoCapture is activated and set to False AutoCapture
is deactivated.

Remarks
none

See also

7.13.1.4 Spec::AutoRecalibrateProbe

(Deprecated) Returns or set a flag to select if the auto recalibrate probe process should
be performed before every spec.

Syntax

spec.AutoRecalibrateProbe [= flag]

©2022 by Nanosurf, all rights reserved

322 Script Programmers Manual

Setting

Argument Type Description

flag Boolean Set to Tr ue is activated
Remarks

None

See also

Property AutoRecalibrateProbelntenal

7.13.1.5 Spec::AutoRecalibrateProbelnterval

Returns or set a value to select in what interval the auto recalibrate probe process
should be performed before specs.

Syntax

spec.AutoRecalibrateProbelnterval [= val]

Setting
Argument Type Description
val long 0 = Deactivated
1 = Performed before every spec
N = Performed before every nth spec
Remarks
None
See also

7.13.1.6 Spec::BwdModDatapoints

Returns or set the number of measurement points of a backward modulation

©2022 by Nanosurf, all rights reserved

Object Reference 323

Syntax

spec.BwdModDatapoints [= points]

Setting
Argument Type Description
points long Defines the number of data points stored during a backward
modulation. Minimum value is 2.
Remarks

This property defines how many data points are measured during a backward
spectroscopy measurement.

See also

Property
Method Start

7.13.1.7 Spec::BwdModulationMode

Returns or set the modulation mode of the spectroscopy.

Syntax
spec.BwdModulationMode [= mode]
Setting

Argument Type Description
mode long Defines the mode during a spectroscopy. See mode numbers in
the table below.

Remarks

Table of possible modes:

State | Name Description
No.

0 [SpecModMode_FixedLength |Stop if the end point is reached.

©2022 by Nanosurf, all rights reserved

324 Script Programmers Manual

1 |SpecModMode_StopByValue |Stop if the modulation mode criteria's are meet.

See also

Property BwdModulationStopMode BwdModulationStopValue
Method

7.13.1.8 Spec::BwdModulationRange

Returns or set the backward modulation range.

Syntax
spec.BwdModulationRange [= range]
Setting

Argument Type Description
range double Defines the range of the backward modulation. [= range] range in
m if modulation output "Z-Axis"

Remarks

none

See also

7.13.1.9 Spec::BwdModulationStopMode

Returns or set the mode of the backward modulation stop.

Syntax

spec.BwdModulationStopMode [= mode]

Setting
Argument Type Description
mode long Defines the stop mode during a spectroscopy. See mode numbers
in the table below.
Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 325

Table of possible modes:

State | Name Description
No.

0 [SpecStopMode_IsLessThan |No sync pulses are generated output is at Low-Lever.

1 |SpecStopMode_IsGreaterThan |At each spectroscopy sample position a High-Pulse is
generated

See also

7.13.1.10 Spec::BwdModulationStopValue

Returns or set the value of the backward modulation stop.

Syntax

spec.BwdModulationStopValue [= value]

Setting
Argument Type Description
value double Defines the stop value during a spectroscopy. [= value] value in V,
m or N
Remarks
none
See also

7.13.1.11 Spec::BwdModulationTime

Returns or set the backward modulation time.

Syntax
spec.BwdModulationTime [= time]

Setting

©2022 by Nanosurf, all rights reserved

326 Script Programmers Manual

Argument Type Description

time double Defines the backward modulation time. [= time] time in second

Remarks

none

See also

7.13.1.12 Spec::BwdMoveSpeed

Returns or set the backward move speed.

Syntax
spec.BwdMoveSpeed [= speed]
Setting

Argument Type Description
speed double Defines the move speed. [= speed] speed in m/s if modulation
output "Z-Axis"

Remarks

none

See also

7.13.1.13 Spec::BwdPauseDatapoints

Returns or set the number of measurement points of a backward pause

Syntax
spec.BwdPauseDatapoints [= points]

Setting

©2022 by Nanosurf, all rights reserved

Object Reference 327

Argument Type Description

points long Defines the number of data points stored during a backward pause.
Minimum value is 2.

Remarks

This property defines how many data points are measured during a backward
spectroscopy pause measurement.

See also

Property
Method Start

7.13.1.14 Spec::BwdPauseMode

Returns or set the backward pause mode.

Syntax
spec.BwdPauseMode [= mode]
Setting

Argument Type Description
mode long Defines the backward pause mode. See mode numbers in the
table below.

Remarks

Table of possible modes:

State | Name Description
No.
0 |SpecPauseMode_ZOff Keep last Z-Pos.
1 |SpecPauseMode_ZOn Z-Controller active.
See also

©2022 by Nanosurf, all rights reserved

328 Script Programmers Manual

7.13.1.15 Spec::BwdPauseTime

Returns or selects the backward pause time.
Syntax

spec.BwdPauseTime [=time]
Setting

Argument Type Description

time double Defines the backward pause time. [= time] time in second

Remarks

none

See also

7.13.1.16 Spec::BwdSamplingRate

Returns or selects the backward sampling rate.
Syntax

spec.BwdSamplingRate [= value]
Setting

Argument Type Description

value double Defines the backward sampling rate. [= value] value in Hz

Remarks

none

See also

©2022 by Nanosurf, all rights reserved

Object Reference 329

7.13.1.17 Spec::CurrentModulationPhase

Returns the current modulation phase.

Syntax

spec.CurrentModulationPhase [= phase] [read only]

Setting

Argument Type

phase

Remarks

Description

long Defines the current modulation phase. See phase numbers in the

table below.

Phases may be skipped either because they don't exist or the time between property calls sees to
missed phases.

Table of possible phases:

State | Name Description
No.
0 [No Phase Not in a specific phase, spec might not be running or
between phases right now
1 Forward Modulation In Forward Modulation phase
2 Forward Pause In Forward Pause phase
3 Backward Modulation In Backward Modulation phase
4 [Backward Pause In Backward Modulation phase
See also

7.13.1.18 Spec::EnableRelative

Returns or set a flag to select if end and start values are relative values or not.

Syntax

spec.EnableRelative [= flag]

Setting

©2022 by Nanosurf, all rights reserved

330 Script Programmers Manual

Argument Type Description

flag Boolean Set to True is StartValue and EndValue properties should be
interpreted as relative shifts to the current value.

Remarks

This flag selects if the values in StartValue and EndValue properties are interpreted
as relative values to the current output value. A current output value is the value which
the output had prior to the spectroscopy measurment.

Relative mode is used mainly to modulate the Z-Axis because normally not the absolute
z value is interesting but the relative z value to the z-position of the topography. (e.g

sample is at 3um Z controller output position, EnableRelative = Tr ue, StartValue= -1um,
EndValue = 5um, resulting measurement is done from 2um to 8um)

See also

Property StartValue, ModulatedOutput

7.13.1.19 Spec::FwdModDatapoints

Returns or set the number of measurement points of a forward modulation

Syntax
spec.FwdModDatapoints [= points]
Setting

Argument Type Description

points long Defines the number of data points stored during a forward
modulation. Minimum value is 2.

Remarks

This property defines how many data points are measured during a forward
spectroscopy measurement.

See also

Property
Method Start

©2022 by Nanosurf, all rights reserved

Object Reference 331

7.13.1.20 Spec::FwdModulationMode

Returns or set the modulation mode of the spectroscopy.

Syntax

spec.FwdModulationMode [= mode]

Setting
Argument Type Description
mode long Defines the mode during a spectroscopy. See mode numbers in
the table below.
Remarks

Table of possible modes:

State | Name Description
No.

0 [SpecModMode_FixedLength |Stop if the end point is reached.

1 |SpecModMode_StopByValue |Stop if the modulation mode criteria's are meet.

See also

Property FwdModulationStopMode FwdModulationStopValue
Method

7.13.1.21 Spec::FwdModulationRange

Returns or set the forward modulation range.

Syntax
spec.FwdModulationRange [=range]
Setting

Argument Type Description

©2022 by Nanosurf, all rights reserved

332 Script Programmers Manual

range double Defines the range of the forward modulation. [= range] range in m if
modulation output "Z-Axis"

Remarks

none

See also

7.13.1.22 Spec::FwdModulationStopMode

Returns or set the mode of the forward modulation stop.

Syntax
spec.FwdModulationStopMode [= mode]
Setting

Argument Type Description
mode long Defines the stop mode during a spectroscopy. See mode numbers
in the table below.

Remarks

Table of possible modes:

State | Name Description
No.
0 [SpecStopMode IsLessThan |No sync pulses are generated output is at Low-Lever.

1 |SpecStopMode_IsGreaterThan |At each spectroscopy sample position a High-Pulse is
generated

See also

7.13.1.23 Spec::FwdModulationStopValue

Returns or set the value of the forward modulation stop.

©2022 by Nanosurf, all rights reserved

Object Reference 333

Syntax

spec.FwdModulationStopValue [= value]

Setting
Argument Type Description
value double Defines the stop value during a spectroscopy. [= value] value in V,
m or N
Remarks
none
See also

7.13.1.24 Spec::FwdModulationTime

Returns or set the forward modulation time.

Syntax
spec.FwdModulationTime [=time]
Setting

Argument Type Description

time double Defines the forward modulation time. [= time] time in second

Remarks

none

See also

7.13.1.25 Spec::FwdMoveSpeed

Returns or set the forward move speed.

Syntax

©2022 by Nanosurf, all rights reserved

334 Script Programmers Manual

spec.FwdMoveSpeed [= speed]

Setting
Argument Type Description
speed double Defines the move speed. [= speed] speed in m/s if modulation
output "Z-Axis"
Remarks
none
See also

7.13.1.26 Spec::FwdPauseDatapoints

Returns or set the number of measurement points of a forward pause

Syntax
spec.FwdPauseDatapoints [= points]
Setting

Argument Type Description

points long Defines the number of data points stored during a backward pause.
Minimum value is 2.

Remarks

This property defines how many data points are measured during a forward
spectroscopy measurement.

See also

Property
Method Start

7.13.1.27 Spec::FwdPauseMode

Returns or set the forward pause mode.

©2022 by Nanosurf, all rights reserved

Object Reference 335

Syntax

spec.FwdPauseMode [= mode]

Setting
Argument Type Description
mode long Defines the forward pause mode. See mode numbers in the table
below.
Remarks

Table of possible modes:

State | Name Description
No.
0 [SpecPauseMode_ZOff Keep last Z-Pos.
1 |SpecPauseMode ZOn Z-Controller active.
See also

7.13.1.28 Spec::FwdPauseTime

Returns or selects the forward pause time.
Syntax

spec.FwdPauseTime [=time]
Setting

Argument Type Description

time double Defines the forward pause time. [= time] time in second

Remarks

none

See also

©2022 by Nanosurf, all rights reserved

336 Script Programmers Manual

7.13.1.29 Spec::FwdSamplingRate

Returns or selects the forward sampling rate.

Syntax

spec.FwdSamplingRate [= value]

Setting

Argument Type

value

Remarks

none

See also

double

7.13.1.32 Spec::LineMin

Return or set the min value for the spectroscopy line

Syntax

spec.LineMin(group, channel, line) [= min]

Description

Defines the forward sampling rate. [= value] value in Hz

Argument
Paramete [Type Description
r
group long number of group
channel |long number of channel
line long line number
Remarks
none

©2022 by Nanosurf, all rights reserved

Object Reference

See also

Property LinePoints, LineRange
Method GetLine, GetLine2

7.13.1.33 Spec::LinePoints
Return or set the points value for the spectroscopy line
Syntax

spec.LinePoints(group, channel, line) [= points]

337

Argument
Paramete [Type Description
r
group long number of group
channel |long number of channel
line long line number
Remarks
none
See also

Property LineMin, LineRange
Method GetLine, GetLine2

7.13.1.34 Spec::LineRange
Return or set the range value for the spectroscopy line
Syntax

spec.LineRange(group, channel, line) [= range]

Argument
Paramete [Type Description
r
group long number of group

©2022 by Nanosurf, all rights reserved

338 Script Programmers Manual

channel |long number of channel
line long line number
Remarks
none
See also

Property LineMin, LinePoints
Method GetLine, GetLine2

7.13.1.35 Spec::ModulatedOutput

Returns or selects the output of modulation.
Syntax

spec.ModulatedOutput [= output]
Setting

Argument Type Description

output long Defines the output signal which is modulated. See outputs in the
table below.

Remarks

The spectroscopy modulation can be at different signal output. Which output is used is
defined by this property.

Table of outputs for spectroscopy modulation :

Output | Name Description
No.
0 [ModOut _Z Z-Axis is modulated
1 |ModOut_TipVoltage The Tip Voltage output is modulated
2 |ModOut_UserOutl The User Output 1 is modulated
3 |ModOut_UserOut2 The User Output 2 is modulated
See also

Method Start

©2022 by Nanosurf, all rights reserved

Object Reference 339

Version info

More outputs defined in software v1.4.0 or later

7.13.1.36 Spec::ModuleLevel
Returns or selects the mode of the synchronization output.
Syntax

spec.ModuleLevel [= Level]

Setting

Argument Type Description

level long Defines the spectroscopy level.
Remarks

Table of possible modes:

State | Name Description
No.
0 [Standard mode Standard set of spectroscopy functionality.
1 |Advanced mode Advanced set of spectroscopy functionality. To use the
advanced mode a key has to be purchased.

See also

7.13.1.37 Spec::PositionListCount

Returns the PositionListCount.
Syntax

spec.PositionListCount [= count]
Setting

Argument Type Description

count Long read only

Remarks

©2022 by Nanosurf, all rights reserved

340 Script Programmers Manual

none

See also

7.13.1.38 Spec::Repetition

Returns or set the number of modulation cycles during a measurement.

Syntax

spec.Repetition [= count]

Setting
Argument Type Description
count long Defines the cycles of modulation per measurement. Minimum
value is 1.
Remarks

This property defines how many modulations are repeated per spectroscopy

measurement.

See also

7.13.1.39 Spec::RepetitionMode

Returns or selects the repetition mode.

Syntax
spec.RepetitionMode [= mode]
Setting

Argument Type Description

mode long Defines the mode that is active. See outputs in the table below.

Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 341

Table of modes:

Output | Name Description
No.
0 [RepetitionMode_List Repeat all N points Xtimes. 1 file per list.
1 RepetitionMode_Position Repeat each position X times. 1 file per position.
See also

Method Repetition

7.13.1.40 Spec::Sequence

Returns or set the number of xy-points per spectroscopy sequence.
Syntax

spec.Sequence [= points]
Setting

Argument Type Description

points long Defines the number of xy-positions per spectroscopy sequence.
Minimum value is 1.

Remarks

A complete spectroscopy is a sequence of measurements at different position over the
sample.

The measurement positions are spread continuously along a line defined by the four
properties.

See also

Property
Method Spec::Start, Spec::AddPosition, Spec::ClearPositionList

7.13.1.41 Spec::SpecEndMode

Returns or set the spectroscopy end mode.

Syntax

©2022 by Nanosurf, all rights reserved

342

Script Programmers Manual

spec.SpecEndMode [= mode]

Table of possible modes:

Setting
Argument Type Description
mode long Defines the spectroscopy end mode. See mode numbers in the
table below.
Remarks

7.13.1.42 Spec::StartOffset

Syntax

spec.StartOffset [= value]

Setting

Argument Type Description

value

Remarks

none

See also

State | Name Description
No.
0 [SpecEndMode_StaylLastZPos |Keep last Z-Pos.
1 |SpecEndMode_Approached |Z-Controller active.
See also

Returns or set the start value of the measurement

double Defines the start value of the spectroscopy modulation.

©2022 by Nanosurf, all rights reserved

Object Reference 343

7.13.1.44 Spec::SyncOutMode

Returns or selects the mode of the synchronization output.
Syntax

spec.SyncOutMode [= mode]
Setting

Argument Type Description

mode long Defines the signal generated at the synchronization output during a
spectroscopy. See mode numbers in the table below.

Remarks
During a spectroscopy modulation different synchronisation signal can be generated at
the sync output.
The sync pulse durations is about 4us.

Table of possible modes:

State | Name Description
No.
0 |SyncOut_NoSync No sync pulses are generated output is at Low-Lever.
1 |SyncOut_PulsSample At each spectroscopy sample position a High-Pulse is
generated
2 [SyncOut_PulsBegin At the beginning of spectroscopy measurement a High-

Pulse is generated

3 [SyncOut_PulsEnd At the end of spectroscopy measurement a High-Pulse
is generated

4 |SyncOut_PulsBeginAndEn |At the beginning and the end of spectroscopy
d measurement a High-Pulse is generated

5 [SyncOut_LevelBeginToEnd|A High level is generated during the spectroscopy
measurement.

See also

Description of Sync-Output in the Operating Manual

Version info

Software v1.4.0 or later

©2022 by Nanosurf, all rights reserved

344 Script Programmers Manual

7.13.2 Methods

7.13.2.1 Spec::AddPosition

Add a spectroscopy position to the list of positions.
Syntax
spec.AddPosition(x, y, z)

Result

ParameteType Description
r

X double X-Axis component of the destination position. Unit in meter [m]
y double Y-Axis component of the destination position. Unit in meter [m]
z double Z-Axis component of the destination position. Unit in meter [m]
Remarks

This method adds a spectroscopy position to the position list. The coordinate system of
the destination position is the scanner coordinate system. l.e. the position (0,0,0) is the
center position of the scanner.

Example

pos(x,y,z) = (lum 2um Oum
obj Spec. AddPosition le-6,2e-6,0

See also

Method ClearPositionList,

7.13.2.4 Spec::ClearPositionList

Clear the spectroscopy position list.
Syntax

spec.ClearPositionList
Result

none

©2022 by Nanosurf, all rights reserved

Object Reference 345

Remarks
This method clears the spectroscopy position list.

Example

clear position |ist
obj Spec. Cl ear Posi ti onLi st

See also

Method AddPosition

7.13.2.5 Spec::Currentline
Returns the number of the last measured spectroscopy line.
Syntax

line = spec.Currentline

Result

Result Type Description

line long The last measured spectroscopy line number.
Remarks

This method is returning the number of the last measured spectroscopy line.

A complete spectroscopy sequence is composed of spectroscopy data lines. At each
Sequence point a spectroscopy data line is stored. A spectroscopy data line is
composed of two spectroscopy modulation data array. One for ForwardSpectroscopy
and one for BackwardSpectroscopy. Line zero is the first sequence data line and the
last has number Sequence - 1.

This method can be used to monitor which spectroscopy lines is currently measured
during a spectroscopy process.

See also

Property Sequence
Method Start, GetLine, IsMeasuring

©2022 by Nanosurf, all rights reserved

346

Script Programmers Manual

7.13.2.7 Spec::GetLine

Returns a string of data values of a spectroscopy data line.

Syntax

array = spec.GetLine(group,channel,specinefilter,conversion)

Argument
Paramete [Type Description
r
group long number of group
channel |long number of channel
specline |long spec line number
filter long index of mathematical filter to be used
conversion |long index of conwersion type of results
Result
Result Type Description
array String Character string with comma separated values of all the values of
the scan line
Remarks

This method returns a string of data values of a spectroscopy data line. Any signal of a
measured spectroscopy sequence can be extracted and the data values can be
processed with the same filters as available for the user in the "Chart Toolbar". The
result is in a comma separated string in different numerical formats.

The first two arguments group and channel selects the matrix of a specific signal.

Table of group numbers:

Group | Group Name Description
No.

0 Group_ForwardSpec Selects signal channels of forward spectroscopy
modulation

1 Group_BackwardSpec |Selects signal channels of backward spectroscopy
modulation

2 Group_ForwardSpecPaus|Selects signal channels of forward pause spectroscopy

e
3 Group_BackwardSpecPa |Selects signal channels of backward pause spectroscopy

©2022 by Nanosurf, all rights reserved

Object Reference 347

| Juse |

In each group there are different signal channels. To get the values of a specific signal
one has to know the channel number. If a certain channel is available in a
measurement depends on the active operating mode during the measurement.

Table of channel numbers:

Channel| Signal Name Description
No.

0 SigDeflection Static cantilever deflection signal

1 SigTopography |Z-Topography signal

2 SigAmplitude Cantilever vibrating amplitude signal
3 SigPhase Cantilever phase shift signal

4 SigUser User's defined ADC input signal

The argument specline is the number of the sequence data line to extract. 0 is the first
seqgunece line and property Sequence -1 the last one.

The argument filter and conversion defines the data processing algorithm and
formating to be used.
See parameter tables at Data.GetLine Method.

Example

get deflection of forward spec |ine of sequence 5 with plane fit filter active
and in [n
specline = obj Spec. GetLine(0,0,5,2,1)
datararray = Split(specline,",")

get user input signal of current scan line, no filter as 16bit val ues

specline = obj Spec. GetLi ne(0, 5, obj Spec. Currentline, 0,0)

See also

Property Sequence
Method Start, Currentline

7.13.2.8 Spec::GetlLine2
Returns a VARIANT array of data values of a spectroscopy data line.
Syntax

array = spec.GetLine2(group, channel, specline, filter, conversion)

©2022 by Nanosurf, all rights reserved

348 Script Programmers Manual

Argument

Paramete [Type Description

r

group long number of group

channel |long number of channel

specline |long spec line number

filter long index of mathematical filter to be used

conversion |long index of conwersion type of results
Result

Result Type Description

array VARIANT [VARIANT array with values of all the values of the spec line
Remarks

This method returns a string of data values of a spectroscopy data line. Any signal of a
measured spectroscopy sequence can be extracted and the data values can be
processed with the same filters as available for the user in the "Chart Toolbar". The
result is in a comma separated string in different numerical formats.

The first two arguments group and channel selects the matrix of a specific signal.

Table of group numbers:

Group | Group Name Description
No.
0 Group_ForwardSpec Selects signal channels of forward spectroscopy
modulation

1 Group_BackwardSpec |Selects signal channels of backward spectroscopy
modulation

2 Group_ForwardSpecPaus|Selects signal channels of forward pause spectroscopy
e
3 Group_BackwardSpecPa |Selects signal channels of backward pause spectroscopy
use

In each group there are different signal channels. To get the values of a specific signal
one has to know the channel number. If a certain channel is available in a
measurement depends on the active operating mode during the measurement.

Table of channel numbers:

©2022 by Nanosurf, all rights reserved

Object Reference 349

Channel | Signal Name Description
No.

0 SigDeflection Static cantilever deflection signal

1 SigTopography |Z-Topography signal

2 SigAmplitude Cantilever vibrating amplitude signal
3 SigPhase Cantilever phase shift signal

4 SigUser User's defined ADC input signal

The argument specline is the number of the sequence data line to extract. O is the first
sequnece line and property Sequence -1 the last one.

The argument filter and conversion defines the data processing algorithm and
formating to be used.
See parameter tables at Data.GetLine Method.

Example
get deflection of forward spec |ine of sequence 5 with plane fit filter active
and in [m
specline = obj Spec. GetLine(0,0,5,2,1)
datararray = Split(specline,",")

get user input signal of current scan line, no filter as 16bit val ues
specline = obj Spec. Get Li ne(0, 5, obj Spec. Currentline, 0, 0)
See also

Property Sequence
Method Start, Currentline

7.13.2.9 Spec::IsCapturing

Returns if a capture is pending or not.
Syntax

flag = spec.IsCapturing
Result

Result Type Description

flag Boolean Returns True if a capture is pending

Remarks

©2022 by Nanosurf, all rights reserved

350 Script Programmers Manual

This method is returing Tr ue if a capture is pending.

Example

I f obj Spec.|sCapturing Then
obj Spec. St opCapture
End | f

See also

Method StartCapture, StopCapture

7.13.2.10 Spec::IsMeasuring
Returns if a spectroscopy measurement is in process or not.
Syntax

flag = spec.IsMeasuring

Result

Result Type Description

flag Boolean Returns True if a spectroscopy measurement is in process
Remarks

This method is returning Tr ue if a Spectroscopy measurement is currently running.

Example

measur e
obj Spec. Start
Do Wil e obj Spec.|sMeasuring : Loop

copy i mage date
obj Spec. St art Capture

See also

Method Start

7.13.2.12 Spec::IsMoving

Returns if a tip movement by StartMoveTipTo is in process or not.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 351

flag = spec.IsMoving

Result

Result Type Description

flag Boolean Returns True if a tip movement is in process
Remarks

This method is returning Tr ue if a tip movement started by StartMoveTipTo is currently
running.

If fast tip movement is needed by script control please make sure that the
StatusReadDelay property of the Application class is set to zero!

Example

move tip to pos(x,y,z) = (
obj App. St at usReadDel ay = 0.0
obj Spec. St art MoveTi pTo 1le-6, 2e-6,0
Do Wil e obj Spec.|sMving : Loop

lum 2um Oum)

See also

Method StartMoveTipTo, Property objApp.StatusReadDelay

7.13.2.16 Spec::ShowWindow

Defines the display style of the Spectroscopy window.
Syntax
spec.ShowWindow(style)
Arguments
Argument Type Description
style short Visibility style number
Result
None.

Remarks

©2022 by Nanosurf, all rights reserved

352

Script Programmers Manual

The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example

obj Spec. ShowW ndow(0) ' hide the w ndow
See also

None.

Version info

Software v1.4.0 or later

7.13.2.17 Spec::Start

Starts spectroscopy sequence.
Syntax

spec.Start
Remarks

This method is starting the spectroscopy sequence. It can be aborted at the end of a
modulation by method Stop. If a spectroscopy measurement is running read method
IsMeasuring.

The modulation output, the start and end values and all the other properties of
spectroscopy class should be predefined prior the start but some can be changed also
during spectroscopy. A call to StartCapture creates a new document after the
spectroscopy measurement is finished.

During a spectroscopy modulation the z feedback controller is set to
Loopmode_Freeze mode.

Please use the command AddPosition to add a position where a spectroscopy measurment
should take place. Use the command ClearPositionList to clear the position list.

Example

do spec
obj Spec. Start
Do Wil e obj Spec.|sMeasuring : Loop

©2022 by Nanosurf, all rights reserved

Object Reference 353

See also

Method IsMeasuring
Class OperatingMode, ZController

7.13.2.19 Spec::StartCapture

Create a new image document.
Syntax

spec.StartCapture
Remarks

This method copies the measured spectroscopy data to a new image document. If a
spectroscopy measurment process is running at the time StartCapture is called the
copy is delayed until the sequence is fully measured. A pending capture can be called
with StopCapture. If a capture is pending read method IsCapturing.

Example

start spec
obj Spec. Start

prepare i mage copy
obj Scan. St art Capture

wait until copy is taken at end of sequnece

Do Wil e obj Spec.IsCapturing : Loop
obj App. SaveDocunent (" myspec. ni d")

See also

Method StopCapture, IsCapturing
Method Application.SaveDocument

7.13.2.20 Spec::StartMoveTipTo
Move the tip from the current position to a destination coordinate.
Syntax

spec.StartMoveTipTo(x,y,z)

©2022 by Nanosurf, all rights reserved

354

Script Programmers Manual

Argument
Paramete [Type Description
;
X double |X-Axis component of the destination position. Unit in meter [m]
y double |Y-Axis component of the destination position. Unit in meter [m]
z double |Z-Axis component of the destination position. Unit in meter [m]
Remarks

This method moves the tip from the current position to a target position. The position is
defined in the scanners physical reference coordinate system. The move speed is
approximately defined the factor

Move speed = objScan.ImageWidth / objScan.Scantime

Attention: If the Z controller is in Loopmode_Run then the Z-Position is never exactly
the value of the z argument but a superimpose of the Z-Argument and the z-feedback
output signal.

The method only starts the movement and return immediately. To wait until the
movement is finished read IsMoving method.

If fast tip movement is needed by script control please make sure that the
StatusReadDelay property of the Application class is set to zero!

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

Si npl e lithography.

Scratch a square and i mage afterward

30e-9 'N
200e-9 'N

nor mal f orce
scratchforce

prepare operating node

obj App. StatusReadDelay = 0.0 ' No delay to get full witing speed
obj OpMode. Operati ngvode = 1 ' Static Force node
obj OpMode. Canti | ever =0 CONTR Lever

nove to start point
obj ZCtrl . Set Poi nt = normal force
obj Spec. Start MoveTi pTo -5e-6,-5e-6,0
Do Wil e obj Spec.|IsMyving : Loop

scratch the square
obj ZCtrl . Set Poi nt = scratchforce

©2022 by Nanosurf, all rights reserved

Object Reference 355

obj Spec. Start MoveTi pTo 5e-6,-5e-6,0
Do Wil e obj Spec.|IsMyving : Loop

obj Spec. St art MoveTi pTo 5e-6, 5e-6,0
Do Whil e obj Spec.|sMwving : Loop

obj Spec. Start MoveTi pTo -5e-6, 5e-6,0
Do Wil e obj Spec.|IsMyving : Loop

obj Spec. Start MoveTi pTo -5e-6,-5e-6,0
Do Whil e obj Spec.|sMwving : Loop

rel ease scratch a square
obj ZCtrl . Set Poi nt = normal force

i mge
obj Scan. | mageSi ze 30e- 6, 30e-6

obj Scan. Start FrameUp
Do Wil e obj Scan.|sScanning : Loop

See also

Method IsMoving, Property objApp.StatusReadDelay

7.13.2.21 Spec::Stop

Stops spectroscopy measurement immediately.
Syntax

spec.Stop
Remarks

This method stops any spectroscopy process immediately after the current modulation
is finished.
A possible pending capture flag is also cleared and no document is created.

Example

start scan
obj Spec. Start

do something else ..

finish i mediately
obj Spec. St op

See also

©2022 by Nanosurf, all rights reserved

356 Script Programmers Manual

Method Start, StartCapture

7.13.2.22 Spec::StopCapture

Cancel a pending capture
Syntax
spec.StopCapture

Remarks

This method cancel a pending capture. If a capture is pending read method

IsCapturing.

Example

start sequence
obj Spec. Start

prepare data copy
obj Scan. Start Capture

do sonet hi ng

I f obj Spec.|sCapturing Then

obj Spec. St opCapture
End | f

See also

Method StartCapture, IsCapturing

7.14 SPMCtriDataStream

The SPM control data stream handles access to the SPM data stream subsystem.

A object pointer to this class is provided by the SPMCtrIManager.DataStream object

property.

Table of properties for the SPMCtriDataStream class:

Property name

Purpose

©2022 by Nanosurf, all rights reserved

Object Reference 357

MonitoringChannelMap

Returns a object pointer to the single LogicalUnit class object

MonitoringChannelUnits

Returns a object pointer to the single DataBuffer class object

Table of methods for the SPMCtrIDataStream class:

Method name Purpose
ActivateSocketStreaminginterface Activates the socket streaming interface on given port
number

7.14.1 Methods

7.14.1.1 SPMCitrIDataStream::ActivateSocketStreaminglinterface

Activates the socket streaming interface.

Syntax

objSPMCtrIDataStream.Activate SocketStreaminginterface(nPort)

Argument

Paramete [Type Description

;

nPort long Socket port to use for socket server (10000<nPort<60000) or 0
Remarks

This method opens a socket. The port must be free for this to be successful.
0 will deactivate the socket streaming interface.

Example

Activate the socket interface on port 30003
obj SPMCtr| Dat aSt ream Acti vat eSocket Stream ngl nterface = "30003"

Deactivate the socket interface
obj SPMCt r| Dat aSt ream Acti vat eSocket Stream ngl nterface = "

Version info

Software v3.8.0.0 or later

I
Q

©2022 by Nanosurf, all rights reserved

358

Script Programmers Manual

7.14.2 Properties

7.14.2.1 SPMCtrIDataStream::MonitoringChannelMap

Returns or sets a variant array of integers with the channel id's in it.

Syntax

objSPMCtrIDataStream.MonitoringChannelMap [= flag]

Setting

Argument|Type Description

flag VARIANT |Array of integers of channel id's

long array

Remarks

Channel Id's:

I/ Cl_Deflection = 0,

/1l ClI_Friction =1, // Lateral

// Cl_Userln3 =2, // User In A/ Tip Current
// Cl_Userln2 =3, // User In B
// Cl_Userlnl = 4,

/1 CI_Anplitude_Alyzrl = 5,

/1 Cl_Phase_Alyzrl = 6,

/1 Cl_LocklnX_Alyzrl = 7,

/1 Cl_LocklnY_Alyzrl = 8,

/1 ClI_AnmplitudeCtrlQut_Alyzrl = 9,
/1 Cl_PhaseCtrl Qut_Alyzrl = 10,

/1 Cl_Anmplitude_Alyzr2 = 11,

/1 Cl_Phase_Alyzr2 = 12,

/1 Cl _LocklnX_Alyzr2 = 13,

/1 Cl_LocklnY_Alyzr2 = 14,

/1 ClI_AnplitudeCtrl Qut_Alyzr2 = 15,
/1 ClI_PhaseCtrl Qut_Alyzr2 = 16,

/1 Cl_ZAxi sSensor = 17,

/1 Cl_XAxis = 18,

/1 Cl _YAxis = 19,

/1 Cl_ZAxis = 20,

/1 Cl_UserQutC = 21,

/1 Cl _TipVol tageQut put = 22,

/1 Cl _ApproachMdtor = 23,

/'l ClI _XAXxi sSensor = 24,

/1 ClI _YAxi sSensor = 25,
See also

Property MonitoringChannelUnits

©2022 by Nanosurf, all rights reserved

Object Reference 359

Version info

Software v3.5.0.0 or later

7.14.2.2 SPMCtrIDataStream::MonitoringChannelUnits

Returns a variant array of strings with the unit names in it. This property is read only.

Syntax

objSPMCtrIDataStream.MonitoringChannelUnits [= flag] [read only]

Setting
Argument|Type Description
flag VARIANT |Array of strings of units names
string
array
Remarks

The monitoring channel map determines the layout of the units contained in the array.

See also

Property MonitoringChannelMap

Version info

Software v3.5.0.0 or later

7.15 SPMCtrIManager
The SPM control manager handles access to the SPM subsystem.

A object pointer to this class is provided by the Application.SPMCtrIManager object
property.

Table of properties for the SPMCtrIManager class:

Property name Purpose

LogicalUnit Returns a object pointer to the single LogicalUnit class object

©2022 by Nanosurf, all rights reserved

360

Script Programmers Manual

DataBuffer Returns a object pointer to the single DataBuffer class object
DataStream Returns a object pointer to the single DataStream class object
MacroCmd Returns a object pointer to the single MacroCmd class object

7.15.1 Properties

7.15.1.1 SPMCtrIManager::DataStream

Returns a dispatch pointer to the sub class DataStream. This property is read only.
Syntax

application.DataStream [read only]
Result

The DataStream property is returning a pointer to the IDispatch interface of the
SPMCtrIDataStream object.

Remarks

Only one single instance exists of the SPMCtrIDataStream object. All successive read
of this property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example
create object
Di m obj App : Set obj App

Di m obj SPMCt r| Manager : Set obj SPMCtrl| Manager
Di m obj SPMDat aStream : Set obj SPMDat aStream

Nanosur f _C3000. Application
obj App. SPMCt r | Manager
obj SPMCt r | Manager . Dat aSt r eam

do something with the object

cl ean up
obj SPMDat aStream = nul : Set obj SPMDat aStream = Not hing
obj SPMCt r| Manager = nul : Set obj SPMCtr| Manager = Not hi ng
obj App = nul : Set obj App = Not hi ng
See also

Class SPMCtrIDataStream

©2022 by Nanosurf, all rights reserved

Object Reference 361

7.16 Stage

The Stage class handles the stage subsystem.

A object pointer to this class is provided by the Application.Stage object property.

Table of properties for the Stage class:

Property name

Purpose

HaslInstance

Says if there is a stage instance

HasPositionReached

Says if the last move has reached its destination

IsReferenced

Says if the stage is referenced

Table of methods for the Stage class:

Method name

Purpose

AppendToMowveTransaction

Append move operation to transaction

ClearMoveTransaction

Clear everything from mowe transaction

Closelnstance

Close stage instance

CommitMoveTransaction

Commit mowe transaction

EmergencyStop

Stops all stage movement with emergency stop
configuration

GetAxisName

Returns the name of given axis

GetAxisPosition

Returns the position orthogonal corrected of given axis

GetAxisPositionMonitoring

inverted of given axis

Returns the position orthogonal corrected & monitor

GetAxisRange

Returns possible range of the axis

GetAxisUnit

Returns the unit of given axis

GetAxisValue

Returns the value (position) of given axis

GetCurrentAxisZeroPosition

Returns the given axis zero position

GetSpeedPercent

Returns the current speed percent value

GetState

Returns the current stage state

GetTransactionCommitCount

Returns the number of committed transactions

Lock

Locks stage if idle

ReferenceSearch

Performs a reference search

SetAxisZero

Sets the current position of axis zero (no mowe)

SetSpeedPercent

Sets the speed percent value

©2022 by Nanosurf, all rights reserved

362 Script Programmers Manual

SetTransactionDependentApproachMowve |Sets the transaction to apply the dependent approach
move

SetTransactionNoOrthoCorrection Sets the transaction to not apply orthogonal corrections

SetTransactionNoSecureMove Sets the transaction to not perform secure moves

Setuplnstance Creates a stage instance from a configuration file

SetZero Sets the current position zero (no mowe)

SpecialOperationAxis Performs a special operation on an axis

SpecialOperationController Performs a special operation on a controller

SpecialOperationView Performs a special operation on the stage view

Stop Stops all stage movement

lUnlock Unlocks the stage if locked

7.16.1 Properties

7.16.1.1 Stage::Haslnstance

Returns a flag which says if there is an stage instance or not. This property is read only.

Syntax

objStage.HaslInstance [= flag] [read only]

Setting

Argument|Type Description

flag Boolean [True if there is a stage instance
Remarks

This flag concerns the main stage sub system instance. There can only be one such
instance. This flag must be true for most other other properties and methods to be
used. If it is not, an instance can be setup with Setupinstance.

See also

Method Setuplinstance, Closelnstance

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

Object Reference 363

7.16.1.2 Stage::HasPositionReached

Returns a flag which says if the last move action has reached the specified position or
not. This property is read only.

Syntax

objStage.HasPositionReached [= flag] [read only]

Setting

Argument|Type Description

flag Boolean |[1r ue if the position was reached
Remarks

This flag says if the stage is referenced. This means that the absolute physical position
is known. This flag must be Tr ue for most movement actions to work properly. This flag
can only be checked after a move. During a move the value is undefined.

See also

Method CommitMoveTransaction, AppendToMoveTransaction, Stop, EmergencyStop

Version info

Software v3.5.0.0 or later

7.16.1.3 Stage::IsReferenced

Returns a flag which says if the stage is referenced or not. This property is read only.

Syntax

objStage.IsReferenced [= flag] [read only]

Setting

Argument|Type Description

flag Boolean |[true if the stage is referenced
Remarks

©2022 by Nanosurf, all rights reserved

364 Script Programmers Manual

This flag says if the stage is referenced. This means that the absolute physical position
is known. This flag must be true for most movement actions to work properly.

See also

Method ReferenceSearch, GetStage

Version info

Software v3.5.0.0 or later

7.16.2 Methods

7.16.2.1 Stage::AppendToMoveTransaction

This method appends a move command to the move transaction.
Syntax
objStage.AppendToMoveTransaction(nAxisld, fNewValue, bRelativeValue)

Argument

Parameter|Type Description

nAxisld int32 Virtual axis identifier

fNewValue [double |Position to mowve to

bRelativeValboolean ([Says if fNewValue is relative to current position or absolute
lue

Result
None
Remarks

The AppendToMoveTransaction method adds a move command to the move
transaction. If a move transaction has multiple move commands for the same axis, the
last one counts (even if this should be avoided anyway). The transaction list can be
cleared with ClearMoveTransaction.

See also

Method ClearMoveTransaction, CommitMoveTransaction

©2022 by Nanosurf, all rights reserved

Object Reference

Version info

Software v3.5.0.0 or later

7.16.2.2 Stage::ClearMoveTransaction

This method clears the current move transaction of all entries.
Syntax
objStage.ClearMoveTransaction()
Argument
None
Result
None

Remarks

365

The ClearMoveTransaction method clears the current move transaction of all entries.

Everything added with AppendToMoveTransaction is lost.
See also

Method AppendToMoveTransaction, CommitMoveTransaction

Version info

Software v3.5.0.0 or later

7.16.2.3 Stage::Closelnstance

This method closes down the stage sub system instance.
Syntax
objStage.Closelnstance()
Argument
None
Result

None

©2022 by Nanosurf, all rights reserved

366

Script Programmers Manual

Remarks

The Closelnstance method closes down the stage sub system instance. If there is no
instance this is noop.

See also

Method Setuplnstance, Property HasInstance

Version info

Software v3.5.0.0 or later

7.16.2.4 Stage::CommitMoveTransaction

This method commits all appended move commands.

Syntax
objStage.CommitMoveTransaction()

Argument
None

Result
None

Remarks
The CommitMoveTransaction method commits all appended move commands. The
appended move commands are not cleared automatically. Depending on the stage
hardware setup and configuration, all move commands are started as concurrent as
possible. If the move transaction is empty this is noop.

See also

Method AppendToMoveTransaction, ClearMoveTransaction

Version info

Software v3.5.0.0 or later

7.16.2.5 Stage::EmergencyStop

This method stops all stage movement with emergency parameters.

Syntax

©2022 by Nanosurf, all rights reserved

Object Reference 367

objStage.EmergencyStop()

Argument
None

Result
None

Remarks
The EmergencyStop method configures special parameters and stops all stage axis
in their movement. Depending on the stage hardware and configuration a stop may
take a long time. To stop as fast as possible an emergency stop configuration is
applied before stopping.

See also

Method Stop, CommitMoveTransaction

Version info

Software v3.5.0.0 or later

7.16.2.6 Stage::GetAxisName

This method returns the axis name of given axis.
Syntax

retval = objStage.GetAxisName(nAxisld)

Argument

Paramete [Type Description

r

nAxisld [int32 Virtual axis id
Result

Result Type Description

retval String Display name of axis
Remarks

©2022 by Nanosurf, all rights reserved

368 Script Programmers Manual

The GetAxisName method returns the display name of the given virtual axis. This
value is directly read from the configuration file.

See also

Method GetAxisUnit, GetAxisValue

Version info

Software v3.5.0.0 or later

7.16.2.7 Stage::GetAxisPosition

This method returns the axis position with orthogonal correction of given axis.

Syntax

retval = objStage.GetAxisPosition(nAxisld)

Argument

Paramete [Type Description

r

nAxisid int32 Virtual axis id
Result

Result Type Description

retval double Position of axis
Remarks

The GetAxisPosition method returns the value of the given virtual axis with the
orthogonal correction calculated in. This value is read from the controller or cache. It is
not monitor inverted. For this see the GetAxisPositionMonitoring method.

See also

Method GetAxisName, GetAxisUnit, GetAxisValue, GetAxisPositionMonitoring

Version info

Software v3.8.5.6 or later

©2022 by Nanosurf, all rights reserved

Object Reference 369

7.16.2.8 Stage::GetAxisPositionMonitoring

This method returns the axis position with orthogonal correction and monitor inversion of
given axis.

Syntax

retval = objStage.GetAxisPositionMonitoring(nAxisid)

Argument

Paramete [Type Description

r

nAxisid int32 Virtual axis id
Result

Result Type Description

retval double Position of axis
Remarks

The GetAxisPositionMonitoring method returns the value of the given virtual axis with
the orthogonal correction calculated in and monitor inversion. This value is read from
the controller or cache.

See also

Method GetAxisName, GetAxisUnit, GetAxisValue, GetAxisPosition

Version info

Software v3.8.5.6 or later

7.16.2.9 Stage::GetAxisRange
This method returns the axis travel range of given axis.
Syntax
retval = objStage.GetAxisRange(nAxislid)

Argument

Paramete [Type Description
r

©2022 by Nanosurf, all rights reserved

370 Script Programmers Manual

nAxisld int32 Virtual axis id
Result

Result Type Description

retval double Range of axis
Remarks

The GetAxisRange method returns the range (upper limit - lower limit) of the given
virtual axis. This value is read from the configuration (stagex).

See also

Method GetAxisValue, GetCurrentAxisZeroPosition

Version info

Software v3.8.2.0 or later

7.16.2.10 Stage::GetAxisUnit

This method returns the axis unit of given axis.
Syntax

retval = objStage.GetAxisUnit(nAxislid)

Argument

Paramete [Type Description

r

nAxisld int32 Virtual axis id
Result

Result Type Description

retval String Display unit of axis
Remarks

The GetAxisUnit method returns the display unit of the given virtual axis. This value is
derived from the axis type.

See also

©2022 by Nanosurf, all rights reserved

Object Reference

Method GetAxisName, GetAxisValue

Version info

Software v3.5.0.0 or later

7.16.2.11 Stage::GetAxisValue

This method returns the axis value of given axis.

Syntax

retval = objStage.GetAxisValue(nAxisld)

371

Argument
Paramete [Type Description
r
nAxisld int32 Virtual axis id
Result
Result Type Description
retval double Value of axis
Remarks

The GetAxisValue method returns the value of the given virtual axis. This value is read

from the controller or cache. It is not orthogonal corrected and not monitor inverted. For

those see the GetAxisPosition & GetAxisPositionMonitoring methods.

See also

Method GetAxisName, GetAxisUnit, GetAxisPosition, GetAxis PositionMonitoring

Version info

Software v3.5.0.0 or later

7.16.2.12 Stage::GetCurrentAxisZeroPosition

This method returns the current axis zero position (offset) of given axis.

Syntax

©2022 by Nanosurf, all rights reserved

372 Script Programmers Manual

retval = objStage.GetCurrentAxisZeroPosition(nAxisld)

Argument

Paramete [Type Description

r

nAxisld [int32 Virtual axis id
Result

Result Type Description

retval double Zero position (offset) of axis
Remarks

The GetCurrentAxisZeroPosition method returns the zero position of the given virtual
axis. This value is read from the virtual axis and can change every time the axis is
referenced or the axes are zeroed.

See also

Method GetAxisValue, GetAxisRange

Version info

Software v3.8.2.0 or later

7.16.2.13 Stage::GetSpeedPercent

This method returns the global stage speed in percent.
Syntax

retval = objStage.GetSpeedPercent()
Argument

None

Result

Result Type Description

retval int32 Global stage speed in percent

Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 373

The GetSpeedPercent method returns the global stage speed in percent.

See also

Method SetSpeedPercent, CommitMoveTransaction

Version i

nfo

Software v3.5.0.0 or later

7.16.2.14 Stage::GetState

This method returns the stage state.

Syntax

retval = objStage.GetState()

Argument

None

Result

Result

Type

Description

retval

int32

Current global stage state

Remarks

The GetAxisValue method returns the current global stage state.
Table of possible states:

State #| Name Description
1 |ldleUnreferenced In idle state without absolute physical reference.
2 |ldle In idle state with absolute physical reference.
3 Move Stage is moving. Either a manual mowve, a "mowve to" or a
reference search.
See also
Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

374 Script Programmers Manual

7.16.2.15 Stage::GetTransactionCommitCount

This method returns the committed transaction count.
Syntax

retval = objStage.GetTransactionCommitCount()
Argument

None

Result

Result Type Description

retval int32 Transaction commit count

Remarks
The GetTransactionCommitCount method returns the committed transaction count.
This count increases with every move commit as soon as the state changes from idle
to non idle. GetState and this count are atomic and thread safe.

See also

Method CommitMoveTransaction, GetState

Version info

Software v3.8.2.0 or later

7.16.2.16 Stage::Lock

This method locks the stage when idle.
Syntax
objStage.Lock()
Argument
None
Result
None

Remarks

©2022 by Nanosurf, all rights reserved

Object Reference 375

The Lock method locks the stage system when idle. Unlock is needed to use the stage
system again. No other action is possible.

See also

Method Unlock

Version info

Software v3.8.8.3 or later

7.16.2.17 Stage::ReferenceSearch

This method starts a reference search.
Syntax

objStage.ReferenceSearch()
Argument

None
Result

None
Remarks

The ReferenceSearch method starts a reference search. The stage must be idle to
perform a reference search. GetState can be used to see if the reference was found.

See also

Method Stop, GetState, Property IsReferenced

Version info

Software v3.5.0.0 or later

7.16.2.18 Stage::SetAxisZero

This method sets given axis coordinate to zero. There is no move, the internal
coordinate offset is changed.

Syntax

objStage.SetAxisZero()

©2022 by Nanosurf, all rights reserved

376 Script Programmers Manual

Argument

Parameter

Type

Description

nAxisld

int32

Virtual axis identifier

Result

None

Remarks

The SetAxisZero method sets given axis coordinate to zero. There is no move, the
internal coordinate offset is changed.

See also

Method GetAxisValue, GetCurrentAxisZeroPosition, SetZero

Version info

Software v3.8.7.0 or later

7.16.2.19 Stage::SetSpeedPercent

This method sets the global stage speed in percent.

Syntax

objStage.SetSpeedPercent(nSpeedPercent)

Argument

Parameter

Type

Description

nSpeedPer
cent

int32

New speed in percent from 1-100

Result
None

Remarks

The SetSpeedPercent method sets the new global stage speed in percent. This new
speed is first used in the next move transaction commit.

See also

©2022 by Nanosurf, all rights reserved

Object Reference

Method GetSpeedPercent, CommitMoveTransaction

Version info

Software v3.5.0.0 or later

7.16.2.20 Stage::SetTransactionDependentApproachMove

377

This method configures the move transaction to add a dependent approach axis move if

necessary.
Syntax
objStage.SetTransactionDependentApproachMove()
Argument
None
Result
None

Remarks

The SetTransactionDependentApproachMove method configure the move
transaction to add a dependent approach axis move if necessary. This move is
configured with the "DependentMoveFactor” attribute on the Approach node in the

stagex configuration.

See also

Method AppendToMoveTransaction, ClearMoveTransaction, CommitMoveTransaction

Version info

Software v3.8.8.0 or later

7.16.2.21 Stage::SetTransactionNoOrthoCorrection

This method configures the move transaction to not apply orthogonal correction when.

Syntax
objStage.SetTransactionNoOrthoCorrection()

Argument

©2022 by Nanosurf, all rights reserved

378

Script Programmers Manual

None
Result

None
Remarks

The SetTransactionNoOrthoCorrection method configure the move transaction to
not apply orthogonal correction when moving. This only applies if an orthogonal relation
is setup between two axes in the stagex configuration.

See also

Method AppendToMoveTransaction, ClearMoveTransaction, CommitMoveTransaction

Version info

Software v3.8.5.6 or later

7.16.2.22 Stage::SetTransactionNoSecureMove

This method configures the move transaction to not apply orthogonal correction when.
Syntax
objStage.SetTransactionNoSecureMove()
Argument
None
Result
None
Remarks

The SetTransactionNoSecureMove method configure the move transaction to not
do secure moves configured in the stagex configuration.

See also

Method AppendToMoveTransaction, ClearMoveTransaction, CommitMoveTransaction

Version info

Software v3.8.5.6 or later

©2022 by Nanosurf, all rights reserved

Object Reference

7.16.2.23 Stage::Setuplinstance

This method creates the stage sub system instance with a given configuration.
Syntax
objStage.Setuplnstance(strFilename)

Argument

379

Paramete [Type Description
r

striilenam |String Stage configuration filename to setup stage instance with
e

Result
None

Remarks

The Setuplinstance method creates the stage sub system instance. If there is already
an instance, it will be closed before creating the new one. The given file name supplies

the configuration for the new instance.
See also

Method Closelnstance, Property HasInstance

Version info

Software v3.5.0.0 or later

7.16.2.24 Stage::SetZero

This method sets every axis coordinate to zero. There is no move, the internal
coordinate offset is changed.

Syntax
objStage.SetZero()
Argument
None

Result

©2022 by Nanosurf, all rights reserved

380 Script Programmers Manual

None
Remarks

The SetZero method sets every axis coordinate to zero. There is no move, the internal
coordinate offset is changed.

See also

Method GetAxisValue, GetCurrentAxisZeroPosition, SetAxisZero

Version info

Software v3.8.2.0 or later

7.16.2.25 Stage::SpecialOperationAxis

This method performs a special operation on a stage axis.
Syntax
objStage.SpecialOperationAxis(nAxisld, nld, fValue, nValue, strValue)

Argument

Parameter|Type Description

nAxisld int32 Virtual Axis id

nid int32 Special operation id

fValue double |Double value pointer
[out]

nValue int32 Integral value pointer
[out]

strValue |String String value pointer
[out]

Result
None

Remarks
The SpecialOperationAxis method performs a special operation on a stage axis.
Special operations are axis type dependent and are documented separately and

customer specific.

See also

©2022 by Nanosurf, all rights reserved

Object Reference 381

Method SpecialOperationView, SpecialOperationController

Version info

Software v3.5.0.0 or later

7.16.2.26 Stage::SpecialOperationController

This method performs a special operation on a stage controller.
Syntax
objStage.SpecialOperationController(nControllerld, nid, fValue, nValue, strvalue)

Argument

Parameter(Type Description

nControllerl |int32 Hardware Controller id

d

nid int32 Special operation id

fValue double |Double value pointer
[out]

nValue int32 Integral value pointer

[out]

strValue String String value pointer
[out]

Result
None
Remarks

The SpecialOperationController method performs a special operation on a stage
controller. Special operations are controller type dependent and are documented
separately and customer specific.

See also

Method SpecialOperationView, SpecialOperationAxis

Version info

Software v3.5.0.0 or later

©2022 by Nanosurf, all rights reserved

382 Script Programmers Manual

7.16.2.27 Stage::SpecialOperationView

This method performs a special operation on the stage view.
Syntax
objStage.SpecialOperationView(nld, fValue, nValue, strValue)

Argument

Parameter|Type Description

nid int32 Special operation id

fValue double |Double value pointer
[out]

nValue int32 Integral value pointer
[out]

strValue |String String value pointer
[out]

Result
None

Remarks
The SpecialOperationView method performs a special operation on the stage view.
Special operations are stage view type dependent and are documented separately and
customer specific.

See also

Method SpecialOperationController, SpecialOperationAxis

Version info

Software v3.5.0.0 or later

7.16.2.28 Stage::Stop
This method stops all stage movement.
Syntax
objStage.Stop()

Argument

©2022 by Nanosurf, all rights reserved

Object Reference

383

None
Result
None

Remarks

The Stop method stops all stage axis in their movement. This can be a reference

search, a manual move or a "move to" operation. If the stage is idle this is noop.
See also

Method EmergencyStop, CommitMoveTransaction

Version info

Software v3.5.0.0 or later

7.16.2.29 Stage::Unlock

This method unlocks the stage when locked.
Syntax
objStage.Unlock()
Argument
None
Result
None
Remarks

The Unlock method unlocks the stage system when locked. No other action is
possible on the stage system while it is locked.

See also
Method Lock

Version info

Software v3.8.8.3 or later

©2022 by Nanosurf, all rights reserved

384

Script Programmers Manual

7.17

System

The System class is providing general online SPM specific properties and methods.

Table of properties of System class:

Property name

Purpose

SystemState

Defines the state the SPM Controller is in

SystemStateldleZAxisMode

Defines the mode for the Z-Axis in the Idle-State

SystemStateldleXY AxisMode

Defines the mode for the XY-Axis in the Idle-State

SystemStateldleDAC1Mode

Defines the mode for the DAC1 channel in the Idle-
State

SystemStateldleZAxisValue

Defines the position for the Z-Axis in the Idle-State

MeasurementEnvironment

Defines the measurement environment the SPM is
working in

SystemHealthState

Monitors the health state of the SPM software /
hardware system

Table of methods of System class:

Methode name

Purpose

MotorMove Performs a motor move

MotorStep Performs a motor step

MotorStop Stops any motor movement
ForceMotorPosUpdate Requests an update of the motor positions
MotorSetPosZero Sets current position of given motor to 0.0

LevelScanhead

Lewels the scanhead

MotorReference

Reference given motor

MotorReferenceAndMoveBack

References given motor and goes back to the
previous position

IsMotorReferenced

Checks whether motors are referenced

GetMotorPosition

Returns position of given motor

©2022 by Nanosurf, all rights reserved

Object Reference 385

7.17.1 Properties

7.17.1.1 System::MeasurementEnvironment

Returns or set the sensor measurement environment mode.
Syntax

system.MeasurementEnvironment [= mode]

Setting
Argument Type Description
mode long Defines the measurement environment mode of the sensor
system. See valid mode index in the table below.
Remarks

Table of measurement environment mode values and description:

State | Name Description
No.

0 MeasEnv_Air measure in air

1 MeasEnv_LIquid measure in liquid
Example

measure in liquid
obj Syst ene. Measur enent Envi ronenment = 1

See also

Property Cantilever.

7.17.1.2 System::SystemHealthState

Monitors the health state of the SPM software / hardware system

Syntax
system.SystemHealthState

Result

©2022 by Nanosurf, all rights reserved

386 Script Programmers Manual

The system health state is a value encoded with information about various system

states.

Those states are looked at in regard of healthiness. For instance, if the controller isn’t
reachable this is unhealthy.
The system health state is a summary of such states and checks and returnes its
status as a bit field of results.

A health state of 0 means everything should be ok.

Table of possible health flags:

Bit No.

Name

Description

0

HealthState CtrIDoNotResponse

The controller gives no answer to a
test communication package in a
timeframe of of 5sec.

SysState_CtrlinSimulationMode

The controller is only simulated.
This could be by desire or because
it was not found during PC
software startup.

Remarks

See also

none

7.17.1.3 System::SystemState

Defines the state the SPM Controller is in

Syntax

system.SystemState

Result

The SPM Controller is always in a so called system state. The following SystemStates
are available:

Table of operating mode values and description:

State

No.

Name Description

©2022 by Nanosurf, all rights reserved

Object Reference 387

0 SysState_Uncal State during startup or error

1 SysState_ldle State after startup and with no running activity

2 SysState_Approach State during approaching

3 SysState_Scan State during imagine

4 SysState_Spec State during spectroscopy

5 SysState Litho State during lithography

6 SysState_MacroCmd State of macro command engine usage
Remarks

The SPM Controller automatically enters states if a activity is started by the user or
COM-API (e.g Start Imaging with "Start" button or calling the objScan.Start command).
After a activity is finished the SPM Controller enters the SysState_lIdle.

See also

Properties SystStateldleZMode, SystemStateldleXYMode

7.17.1.4 System::SystemStateldleZAxisMode

Defines the mode for the Z-Axis in the Idle-State

Syntax
system.SystemStateldleZAxisMode
Result

If the SPM Controller is in the SysState_Idle this property defines the mode the Z-Axis
of the scan head is in.

The following ZldleModes are available:

State | Name Description
No.
0 SysStateldleZ_ZControllerActive [Allows the z feedback controller work on
this axis
1 SysStateldleZ RetractTip Retract the z-Axis to minimal position
2 SysStateldleZ_KeepLastPos Keep the z-Axis value
3 SysStateldleZ AbsolutPos Set the Z-Axis to the defined absolute

©2022 by Nanosurf, all rights reserved

388 Script Programmers Manual

position

Remarks

None.

See also

Properties SystStateldleZAxisValue

7.17.1.5 System::SystemStateldleZAxisValue

Defines the position for the Z-Axis in the Idle-State

Syntax
system.SystemStateldleZAxisValue

Result
If the SPM Controller is in the SysState_Idle and the ZldleMode is set to
SysStateldleZ AbsolutPos this property defines the absolute position the z-axis is set
to.

Remarks

None.

See also

Properties System.System StateldleZAxisMode

7.17.1.6 System::SystemStateldleDAC1Mode
Defines the mode for the DACL1 signal channel in the Idle-State
Syntax

system.SystemStateldleDAC1Mode

Result

©2022 by Nanosurf, all rights reserved

Object Reference 389

If the SPM Controller is in the SysState _Idle this property defines the mode the DAc1
signal channel is in.

The following ZldleModes are available:

State | Name Description
No.

0 SysStateldleZ_ZControllerActive [Allows the z feedback controller work on
this axis

1 SysStateldleZ RetractTip Sets the DAC1 output to minimal value

2 SysStateldleZ KeeplLastPos Keep the DAC1 value

3 SysStateldleZ AbsolutPos Set the DAC1 to a defined absolute
position

Remarks

The DACL1 is mapped by the C3000 controller to the "User Output C" output channel.
The User Output C is some times used for controlling a external long range z-actuator.

The Absolute position value of this channel is defined by the objSignallO.UserDAC1
value.

See also

Properties objSignallO.UserDAC1

7.17.1.7 System::SystemStateldle XYAxisMode

Defines the mode for the XY-Axis in the Idle-State

Syntax
system.SystemStateldle XYAxisMode
Result

If the SPM Controller is in the SysState_Idle this property defines the mode the Z-Axis
of the scan head is in.

The following XYldleModes are available:

©2022 by Nanosurf, all rights reserved

390 Script Programmers Manual

State | Name Description
No.
0 SysStateldleXY_ImageCenter |Go to the center position defined by the
XYOffset of the scan image
1 SysStateldleXY_KeepLastPositio[Keep the XY-Axis value
n
Remarks

The XYOffset is defined by Scan.CenterPosX/Y properties. If the
SysStateldleXY_ImageCenter mode is active any change of the CenterPosition moves
the tip also during SysState_Idle.

See also

Properties Scan.CenterPosX, Scan.CenterPosY

7.17.2 Methods

7.17.2.1 System::MotorMove
Performs a motor move
Syntax

system.MotorMov e (nMotor, direction, speed)

Argument
Parameter |[Type Description
nMotor long Motor ID
nDirection long Direction
nSpeed long Lewel
Remarks

This function requires corresponding motorization to work correctly.

Available nMotor ID's are:

Mot or Appr oach =0,
Mot or A =1,
Mot or B = 2,
Mot or C =3

=4

Mbt or Focus

©2022 by Nanosurf, all rights reserved

Object Reference

Mot or PTEX = 5,
Mot or PTEY = 6,
Mot or BeanDef | ecti onX =7,
Mot or BeanDef | ecti onY = 8,
Mot or Phot odi odeLateral = 9,
Mot or Phot odi odeNormal = 10,
Mot or LensG nbal = 11

Available nDirections are:

Positive
Negati ve

0,
1

Available nSpeed levels are:

Ver y Sl ow
Sl ow

Nor mal
Fast

Ver yFast

[
rWNPRO

See also

Method MotorStop

7.17.2.2 System::MotorStep
Performs a motor step
Syntax

system.Motor Step(nMotor, stepSize)

391

Argument

Parameter ([Type Description

nMotor long Motor ID

stepSize double Step size for motor to perform
Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

Mot or Appr oach
Mot or A
Mot or B
Mot or C

I n

©2022 by Nanosurf, all rights reserved

392 Script Programmers Manual

Mot or Focus = 4,
Mot or PTEX = 5,
Mot or PTEY = 6,
Mot or BeanDef | ecti onX =7,
Mot or BeanDef | ecti onY = 8,
Mot or Phot odi odeLateral = 9,
Mot or Phot odi odeNormal = 10,
Mot or LensG nbal = 11

See also

Method MotorStop

7.17.2.3 System::MotorStop

Stops motors movement
Syntax
system.MotorStop()
Remarks
This function requires corresponding motorization to work correctly.
See also

Method MotorStep, MotorMove

7.17.2.4 System::ForceMotorPosUpdate

Requests an update of the motor positions
Syntax
system.ForceMotorPosUpdate()
Remarks
This function requires corresponding motorization to work correctly.
See also

Method GetMotorPosition

©2022 by Nanosurf, all rights reserved

Object Reference

7.17.2.5 System::MotorSetPosZero

Sets current position of given motor to 0.0

Syntax

system.MotorSetPosZero(nMotor)

393

Argument
Parameter |Type Description
nMotor long Motor ID
Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

Mot or Appr oach

Mbt or A
Mbt or B
Mot or C

Mbt or Focus

Mbt or PTEX
Mbt or PTEY

Mot or BeanDef | ecti onX
Mot or BeanDef | ecti onY
Mot or Phot odi odelLat er al
Mot or Phot odi odeNor nal
Mot or LensG nbal

See also

1
O~NO O~ WNREO

I n
= O
o-

Method GetMotorPosition

7.17.2.6 System:.LevelScanhead

Levels the scanhead

Syntax

system.LevelScanhead()

Remarks

This function requires corresponding motorization to work correctly.

©2022 by Nanosurf, all rights reserved

394 Script Programmers Manual

7.17.2.7 System::MotorReference

References motors

Syntax

system.MotorReference()

Argument
Parameter |Type Description
nMotor long Motor ID
Remarks

This function requires corresponding motorization to work correctly.

Available nMotor ID's are:

Mot or Appr oach

Mbt or A
Mbt or B
Mot or C

Mbt or Focus

Mbt or PTEX
Mbt or PTEY

Mot or BeanDef | ecti onX
Mot or BeanDef | ecti onY
Mot or Phot odi odelLat er al
Mot or Phot odi odeNor nal
Mot or LensG nbal

See also

1
O~NO O~ WNREO

I n
= O
o-

Method MotorReferenceAndMoveBack, IsMotorReferenced

7.17.2.8 Systen::MotorReferenceAndMoveBack

References motors and goes back to the previous position

Syntax

system.MotorReferenceAndMoveBack()

Argument

Parameter

Type

Description

©2022 by Nanosurf, all rights reserved

Object Reference

395

nMotor

long

Motor ID

Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

Mot or Appr oach

Mbt or A
Mbt or B
Mot or C

Mot or Focus

Mbt or PTEX
Mbt or PTEY

Mot or BeanDef | ecti onX
Mot or BeanDef | ecti onY
Mot or Phot odi odelLat er al
Mot or Phot odi odeNor nal
Mot or LensG nbal

See also

1]
O~NoO b~ WNEO

Inn
= O
o-

Method MotorReference, IsMotorReferenced

7.17.2.9 System::IsMotorReferenced

Checks whether motor is referenced

Syntax

flag = system.IsMotorReferenced(nMotor)

Argument
Parameter |Type Description
nMotor long Motor ID
Result
Result Type Description

flag Boolean

Remarks

Returns Tr ue if motors are referenced

This function requires corresponding motorization to work correctly.

©2022 by Nanosurf, all rights reserved

396 Script Programmers Manual

Available nMotor ID's are:

Mot or Appr oach

Mot or A

Mot or B

Mot or C

Mot or Focus

Mot or PTEX

Mot or PTEY

Mot or BeanDef | ecti onX
Mot or BeanDef | ecti onY
Mot or Phot odi odeLat er al
Mot or Phot odi odeNor nal
Mot or LensG nbal

O~NOoO O~ WNEO

See also

Method MotorReference, MotorReferenceAndMoveBack

7.17.2.10 System::GetMotorPosition

Returns position of given motor
Syntax

position = system.GetMotorPosition(nMotor)

Argument
Parameter [Type Description
nMotor long Motor ID
Result
Result Type Description

position double Position of a given motor

Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

Mot or Appr oach =0,
Mot or A =1,
Mot or B = 2,
Mot or C =3

4

Mbt or Focus

©2022 by Nanosurf, all rights reserved

Object Reference 397

Mot or PTEX = 5,
Mot or PTEY = 6,
Mot or BeanDef | ecti onX =7,
Mot or BeanDef | ecti onY = 8,
Mot or Phot odi odeLateral = 9,
Mot or Phot odi odeNormal = 10,
Mot or LensG nbal = 11

See also

Method ForceMotorPosUpdate

7.18 Video

The Video class handles the microscope's video camera.

The Video Cameras in the scan head can be controlled by this class. Two cameras are
available. A TopView camera to look vertical to the sample and the cantilever and a
SideView camera to look about horizontal to the cantilever. VideoSource select one of
them to be displayed in the "Position Window". For each camera the Illumination, the
Brightness and the Contrast of the video display can be adjusted.

A snap shot of the current video image if a compact video camera device is used creates
SaveFrame. If a flex or a highres video camera device is used use SaveFrameMPX1
(side view) or SaveFrameMPX2 (top view).

A object pointer to this class is provided by the Application.Video object property.

Table of properties for Video class:

Property name Purpose

VideoSource Select either TopView or SideView camera
[llumination Set the power of sample illumination
Brightness Set the brightness of video image

Contrast Set the contrast of video image

Table of methods for Video class:

Method name Purpose

CopyFrame Copy the video frame to the clipboard
CopyFrameMPX1 Copy the video frame (side view) to the clipboard
CopyFrameMPX2 Copy the \ideo frame (top view) to the clipboard
SawveFrame Sawe the video frame as JPEG Image file

©2022 by Nanosurf, all rights reserved

398 Script Programmers Manual

SaveFrameMPX1 Sawe the video frame (side view) as PNG, JPG, BMP image file.
SaveFrameMP X2 Sawe the video frame (top view) as PNG, JPG, BMP image file.
Start Start video system, hardware detection, open video panel
Shutdown Stop video system, release hardware, closes video panel
IsStarted Check if video system is running

7.18.1 Properties
7.18.1.1 Video::Brightness
Returns or set the video image brightness.
Syntax
video.Brightness [= value]
Setting

Argument Type Description

value double Defines the video image brightness [%)]. Values of 0 to 100% are
valid.

Remarks
This property defines the brightness of the video image.
Attention: For each video camera the properties lllumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Example

show si de view canera
obj OpMode. Vi deoSour ce
obj OpMode. Bri ght ness

0
100 ' %

See also

Property VideoSource, lllumination, Contrast.

©2022 by Nanosurf, all rights reserved

Object Reference 399

7.18.1.2 Video::Contrast

Returns or set the video image contrast.
Syntax

video.Contrast [= value]
Setting

Argument Type Description

value double Defines the video image contrast [%]. Values of 0 to 100% are
valid.

Remarks
This property defines the contrast of the video image.

Attention: For each video camera the properties lllumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Example

show top view canera
obj OpMode. Vi deoSource = 1
obj OpMode. Cont r ast =80 "%

See also

Property VideoSource, lllumination, Brightness.

7.18.1.3 Video:lllumination

Returns or set the sample illumination.
Syntax

video.lllumination [= value]
Setting

Argument Type Description

value double Defines the illumination of the sample in [%)]. Values of O to 100%
are valid.

©2022 by Nanosurf, all rights reserved

400

Script Programmers Manual

Remarks

This property defines the sample illumination with the build in light sources of the AFM
scan head.

Attention: For each video camera the properties lllumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Example

show si de view canera
obj OpMode. Vi deoSource = 0
obj OpMode. Il lum nation = 60 ' %

See also

Property VideoSource, Brightness, Contrast.

7.18.1.4 Video::VideoSource

Returns or set the active video camera.
Syntax

video.VideoSource [=camera]
Setting

Argument Type Description

camera long Selects the active video camera. See valid camera index in the
table below.

Remarks

The AFM scan head is equipped with