
©2022 by Nanosurf, all rights reserved

Script Programmers Manual

Script Programmers Manual2

©2022 by Nanosurf, all rights reserved

Table of Contents

Part I Frontpage 4

Part II Introduction 5

... 51 Motivation

... 52 What you can do

... 63 What you cannot do

... 74 How to proceed

Part III Scripting 7

... 71 Embedded VBScript

... 82 More Documentation

... 83 Menu Script

Part IV Integration 11

... 121 COM Automation

... 132 Windows Scripting Host

... 143 Visual C++

... 154 Labview

... 165 Python

... 186 Others

Part V Tutorial 19

... 191 Script "AutoImage"

... 192 Start the application

... 213 Preparing measurement

... 224 Approaching the surface

... 235 Scan a surface

... 246 Withdraw tip from surface

... 247 Simple image data analysis

... 258 Document handling

Part VI Script examples 26

... 261 Imaging Adjust XY-Slope

... 302 Create Height Histogram

... 323 Erase glitch from line

... 344 Export data to CSV with Header

3Contents

©2022 by Nanosurf, all rights reserved

... 365 Timer controlled imaging

... 386 Lithography

Part VII Object Reference 40

... 411 Application

... 832 Approach

... 963 BatchManager

... 1174 Chart

... 1295 Data

... 1576 Document

... 1897 Info

... 2008 Litho

... 2129 OperatingMode

... 23410 Scan

... 27611 ScanHead

... 30812 SignalIO

... 31713 Spec

... 35614 SPMCtrlDataStream

... 35915 SPMCtrlManager

... 36116 Stage

... 38417 System

... 39718 Video

... 40819 Thermal Tune

... 42820 ZController

Part VIII Version history 436

4 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

1 Frontpage

for Nanosurf Scripting Interface

v3.10.1.x

©2022 by Nanosurf, all rights reserved

BT01681, v3.10.1.x

5Frontpage

©2022 by Nanosurf, all rights reserved

2 Introduction

This manual is meant as a reference for the COM Automation interface of the Nanosurf
software. This manual consists of two parts. The first part contains an explanation of the
concepts behind the interface. This part should be read entirely to understand the concept
of COM Automation, scripting and how it is implemented in the software. The second part
is a object reference of all classes with their method and properties published by
Nanosurf. In this part it is recommended to read the entry page for each class to get an
overview what these classes functionality is. Afterwards it can be read method or property
wise, when a exact understanding of specific functions is needed.

This manual does not describe general usage of the microscopy. Please read for general
understanding the Nanosurf Operating Instruction Manual and the Nanosurf Software
Reference Manual.

2.1 Motivation

Microscopy is a wonderful technology with a large amount of possibilities for data analysis.
The Nanosurf control software tries to offer a graphical user interface to the most general
tasks used by operators in a daily manner. Nevertheless, there are many thinkable tasks
specific for a single application used only by a small group of users. To integrate these
functions into the core of the software would blow it up and the simplicity would fade away.
Other groups of users are very advanced and like to write custom analysis or automation
sequences. They need a way to do their new experiments. Third, some would like to
integrate or combine the microscopy with other equipment like motorized sample stages,
manufacturing equipment, scratch testers or others. They also need a possibility to let the
different instruments work smoothly together and act as one new machine.

Therefore Nanosurf has developed an scripting interface and new menu items to the
control software to help all group of users. The users which are interested to automate
daily tasks are able to write a script once which defines the custom task. The script is
called comfortably by a click of the mouse from the pull down menu. The advanced users
would like the integrated script editor to program new measurement modes or create their
own analysis algorithms. Integrators possibly will use the external script interface to write
complete new interfaces or control the microscopy out of another software like LabView
and Python.

2.2 What you can do

The script objects give you access to online microscope controls as scan range or
feedback set point. Other objects serve for post processing of data and control the
visualization of them. A script may extract measured data, create new data and store it in
a image document. Most of the user interface data entry fields of the panels are
accessible as object properties.

You may call methods from other objects like windows operating system objects, Internet
Explorer, Microsoft Word and many other vendors applications, ...

Many possible applications for scripting are:

6 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Automation of repetitive tasks like
- Scripts which Approach to sample, take an image, and store it
- Scripts which loads special parameter sets and start a process for quality control
purpose

Write custom data analysis algorithms
- Scripts which calculate the volume of a hole in a image or count grains
- Scripts which calculate height histogram or subtract two images
- Scripts which calculates calibration information from a spectroscopy measurement

Extending the functionality
- Scripts which measure multiple images at the same position every 30min and store
them
- Scripts which measure large high resolution images as a patch work and plot them in
one resulting image
- Scripts which provide lithography functionality and control the tip position

Building complex new systems
- External scripts which controls an automated XY-table and moves the microscope to
different image locations
- Scripts which control additional experiment equipment like a temperature controller or
light sources

More ideas you will find in the chapter Scripting Examples

We hope we could give you some ideas what can be done with the scripting interface. Try
it out and create new applications!

2.3 What you cannot do

With the scripting interface you gain access to internal functions and data of the
microscopy control software "Nanosurf". This is the PC part of the microscopy control
software which provides access to microscope functionality and post processing of
stored image documents. For real time controlling of the microscope itself an external
control electronics with its own software in a flash RAM is used. The script interface does
not give you access to this firmware.

Therefore real time processing or signal modification is not possible. You cannot create
new z feedback control algorithm, real time filtering of signals or create custom new
operating modes.

7Introduction

©2022 by Nanosurf, all rights reserved

2.4 How to proceed

Depending on your knowledge of scripting under Microsoft Windows operating system you
may need to read some chapter carefully or just skip them:

This Introduction chapter gave you an overview of the possibilities of the scripting
interface
Chapter Scripting describes the general concept of scripting technology.

With chapter Integration you learn how to integrate the software with other application.

The Tutorial is a step by step example of a short script.

More examples are provided in chapter Script examples.

Finally chapter Object Reference describes all properties and method of Nanosurf script
classes.

3 Scripting

In this chapter we will look to the embedded script command interpreter. The connection
with external programs is described in chapter Integration.

The term "scripting" means adding functionality to an existing application from external
sources at run time. Such sources can be another running program or at run time by a
embedded command interpreter the application itself.

3.1 Embedded VBScript

In the Nanosurf software a command language interpreter is built in, called "VBScript".
This programming language was defined by Microsoft for the main usage of building
interactive HTML web pages. It supports a subset of Visual Basic commands and
features. A formerly known similar programming environment was "Visual Basic for
Application", in short VBA, which was implemented in old versions of Word or Excel.

A basic hello world program example looks like this:

' start of script

msg = "Hello World!"

MsgBox msg

'end of script

Copy this example into the Script editor and click "Run" (See Script editor).

The functionality of the microscope application is grouped into object of different classes.
Each class provides some properties and methods to get access to the application
internals. There is a main object called "SPM.Application". This object is automatically
defined if you run your script from the embedded script editor or menu item "Script".

Otherwise you have to create one with function
CreateObject("Nanosurf_C3000.Application").

A full description of the available classes with their methods and properties you find in
chapter Object Reference.

8 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

To just simulate a click to the "Start" button in the "Imaging Window" see the following
example:

' connect to scan object

Set objScan = SPM.Application.Scan

' call start method

objScan.Start

'disconnect from scan object

set objScan = nothing

Copy this example into the Script editor and click "Run" (See Script editor).

Go to More Documentation and find links to sources where VBScript is explained.

3.2 More Documentation

We cannot give you a full overview of the scripting. Also describing the full language of
VBScript would go over the focus of this manual. But there are many good resources on
the internet which can guide you. Here are some useful links:

VBScript tutorials and function references:

www.w3schools.com
https://www.devguru.com/content/technologies/vbscript/home.html

Scripting technology and references from Microsoft:

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/
cc784547(v=ws.10)

3.3 Menu Script

To work with scripts there is the ribbon group "Scripting" in the Nanosurf software.

The Nanosurf has an integrated script editor where you can develop your scripts and
run them. See Script editor section for details.
Scripts can also be written in an external standard text editor like Notepad. They have to
be saved with file extension .vbs to be recognized as scripts by the application. To run
such stored scripts call menu "Run form file" (See Run from file).
If script files are placed in a special directory they appear as menu item in menu "Script"
(See Scripts as menu items).

http://www.w3schools.com
http://www.devguru.com/Technologies/vbscript/quickref/vbscript_intro.html
http://msdn.microsoft.com/scripting
http://msdn.microsoft.com/scripting

9Scripting

©2022 by Nanosurf, all rights reserved

3.3.1 Script editor

The Nanosurf has an integrated script editor where you can develop your scripts, run,
load and save them.

Call Menu "Script"->"Scrip Editor" and a dialog appears. This dialog is mode less and
stays open while you can work with other parts of the application.

Script Editor Dialog:

In the editor field you can write scripts and run them immediately.

To store the script permanently click "Save...", to load another script from file into the
editor click "Load...".

10 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

3.3.2 Run from file

With menu item "Script"->"Run form file..." you get a quick access to stored scripts.

 Select in the in the appearing file dialog the desired script file and click "Load". The script
will be loaded and run directly. If an error is detected in the script a dialog will appear with
a description.

3.3.3 Scripts as menu items

To get even more quick access to stored scripts it is possible to display script file names
in the pull down menu "Script" as menu items.

If you click on one of these menu items the script will be loaded and executed
immediately.

In the example above the file "Test Script.vbs" is displayed in the menu as an item. If you
click on it file "Test script.vbs" will be loaded and executed.

If an error is detected in the script a dialog will appear with a description.

The files which are displayed in the pull down menu have to be stored in a special
directory. The directory name can be defined with the Script configuration dialog.

3.3.4 Script configuration

The quick access script files which are displayed in the pull down menu as items have to
be stored in a special directory.

To tell the application your script menu folder, open the configuration dialog with Ribbon

11Scripting

©2022 by Nanosurf, all rights reserved

"File", Menu "Options", Item "Scripting":

Enter a valid directory name in the edit field or select one by click to "Browse".

Leave the dialog by a click to "OK".

All files with the extension ".vbs" in this selected directory are displayed now in the pull
down menu "Script". See Scripts as menu items.

4 Integration

To control the Nanosurf software from an external program the application can act as a
server according to the COM Automation standard defined by Microsoft. Many
programming environments and software packages are able to access the application as
a client through this interface standard:

12 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Some programming environments:

Visual C++, Visual Basic, Delphi, Windows Scripting Host, LabView, ...

Other software packages:

MathLab, MathCAD, Excel, Word, Internet Explorer, ...

Most of the scripts written for embedding into the application can be called with minor or
no changes with the help of the Windows Scripting Host (short WSH) which is part of the
Windows operating system. If you double click to a vbs-file you start the application
WScript.exe and the script is interpreted there (See Windows Scripting Host).

For some programming environment the following sections give a quick guide on how to
interface to the COM Automation server.

4.1 COM Automation

The abbreviation COM stands for 'Component Object Model', which is a Microsoft
standard for building interoperable software components. The COM standard describes
how a program (called server) can publish its functionality to other programs (called
client). The clients can then use the functions of the server using this published
information. The functionality can even be used if the client and server are on different
computers, connected by a network, independent of the programming language in which
the programs were written.

The COM automation standard is defined using the COM standard. The COM automation
standard was necessary because the basic COM standard only defines the internal
principle how to access the functions of a server by a client. But the client needs prior to
its own compilation the information about the servers function details in order to be able to
access them. This is a problem for scripting languages like Visual Basic or other
programs like LabView which should be able to access unknown servers during run time.
This problem was solved by the COM Automation standard.

A COM Automation Server publishes its functionality in such a way that COM Automation
Clients can ask the server during run time about its functions and access them
afterwards. Microsoft defined for this purpose the Dispatch interface definition. The
Dispatch information about the servers function are stored in the servers exe-file, and in a
binary file with the extension '.tlb' which can be loaded by a client if early binding is
necessary or to build class wrapper.

The Dispatch interface of the Nanosurf software is defined in the file
"Nanosurf_C3000".tlb.

The root interface is named "Nanosurf_C3000.Application" and is the only named interface
which can be created by CreateObject(). All other sub objects are created by this root

13Integration

©2022 by Nanosurf, all rights reserved

object.

4.2 Windows Scripting Host

You can control all of the functionality of the Nanosurf from a windows shell script. In
newer version of the Windows operating systems (starting from Windows 98/2000)
Microsoft distributes the so called Windows Scripting Host (WSH). With the WSH you are
able to write shell scripts in a language like Visual Basic Script (.vbs, VBScript) or
JavaScript (.js). VBScript is also used in applications like Internet Explorer, Word or Excel
to give to user the possibility to enhance the functionality of this software package.

You can use either the window based host WScript.exe or the command shell host
CScript.exe to execute scripts.

There are many documentation about the windows scripting host as books or online. See
More Documentation.

Scripts have to be stored in files. The extension of the file defines the program language
the scripting host is using.

Example

1. Open a Editor (e.g Notepad.exe) and copy the following script text into it:

' VBScript example: Measure an image

'-----------------------------------

' connect to microscope

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

objApp.Simulation = True

Do While objApp.IsStartingUp : Loop

'scan an image

Dim objScan : Set objScan = objApp.Scan

objScan.Lines = 16

objScan.Scantime = 0

objScan.StartFrameUp

Do While objScan.IsScanning : Loop

objScan.StartCapture

'disconnect from objects

Set objScan = Nothing

Set objApp = Nothing

2. Save the script to a file. Name the file "MyScript.vbs"
3. Open the File Explorer and navigate to the stored file.
4. Double click on icon "MyScript.vbs"
5. WScript.exe should be executed and run your script.

14 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

6. The Nanosurf should start and a quick dummy image should be measured

4.3 Visual C++

This section describes how to integrate the Nanosurf object interface with Visual C++ 6.

Visual C++ 6 provides a wizard to integrate the Nanosurf object interfaces in an
application. The wizard generates for each COM interface a C++ wrapper class. The
information about the COM interface reads the wizard from the Nanosurf_C3000.tbl file.
This file is distributed with the installation of the application.

If you would like to call some methods or properties from an application follow these
steps.

Create a new dialog based project. Make sure that "Automation" in the Project Wizard
Step 3 is activated.
Start the wizard. Open the "Class Wizard" and click on "Add class...", select "From a
typlibrary...". In the "File Dialog" select the Nanosurf_C3000.tbl from the C:\Program files
\Nanosurf\Nanosurf\Bin directory. In the next dialog all available interfaces from
Nanosurf_C3000 are displayed and selected. Click "OK" to accept the names.
Your project should have now new classes called IProxyXXXXX visible in the class tree

Add the variable IProxyApplication m_objApp to the dialog class definition and insert
#include "Nanosurf_C3000.h" at the beginning.
In the OnInitDialog() function connect to the microscope with the following code

 m_objApp.CreateDispatch("Nanosurf_C3000.Application");

 while (m_objApp.IsStartingUp() != FALSE) ;

To call any method call obj.Methodname(arguments)

To set a property call obj.SetPropertyname(value)

To read a property call value = obj.GetPropertyname()

To connect to a subclass of the Nanosurf define a variable of this type and attach the
return value of the objApp.GetClassname() function to it. After usage of a class call
DetachDispatch().

Example:

// dialog class header

#include "Nanosurf_C3000.h"

CMyDialog {

15Integration

©2022 by Nanosurf, all rights reserved

 IProxyApplication m_objApp;

 IProxyScan m_objScan;

};

// dialog class implementation cpp-file

CMyDialog::OnInitDialog() {

 // connect to server

 m_objApp.CreateDispatch("Nanosurf_C3000.Application");

 while (m_objApp.IsStartingUp() != FALSE) ;

 m_objScan.AttachDispatch(m_objApp.GetScan());

 m_objScan.SetScantime(0.5); // [s]

}

4.4 Labview

Use LabView's ActiveX function blocks in the diagram of your virtual instrument to control
the functionality of the Nanosurf. Four function block types are needed:

• The 'ActiveX Open'-block to start the Nanosurf Server program

• The 'ActiveX Close'-block to stop the Nanosurf Server after executing the VI.

• The 'ActiveX Method'-block to call the Nanosurf methods to send it commands.

• The 'ActiveX Property'-block to read or write the Nanosurf properties to change and/or
read its configuration and status information .

Follow the procedure below on how to wire a ActiveX diagram:

First, a connection between LabView and the Nanosurf software is established using the
'ActiveX Open' function block.
Place this block from the palette 'Functions->Communication->ActiveX'. Now connect
the block to the Nanosurf Software:
Clicking the ActiveX Open block with the right mouse button and selecting the menu
item 'Select ActiveX...->Search'.
Click the 'Browse' button in the dialog to search for the Nanosurf's type library with the
filename 'Nanosurf_C3000.tlb'. This file is located in you Nanosurf installation directory,
which typically is 'C:\program files\Nanosurf\Nanosurf\Bin'. A list of creatable objects is
opened after selecting this file. This list contains the name 'Nanosurf_C3000.Application'
as creatable object.
Select 'Nanosurf_C3000.Application' and click 'OK'. The object is now connected to the
'ActiveX Open' block. The outputs of this block should be connected to the
corresponding inputs of the other ActiveX function blocks. The example program uses
the Nanosurf_C3000 automation server properties to read or write the status and
settings of the Nanosurf. In order to do this, create an 'ActiveX Property' function block
and connect it to the 'ActiveX Open' block:
Create the block analogous to the 'ActiveX Open' function block.

16 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Select the specific property by clicking the lower part of the 'ActiveX Property' block with
the right mouse button, and select a property
from the list in the 'Property>' submenu.

Select whether to read or write the property using the menu item 'Change to read' or
'Change to write' in the same submenu. The current read/write status of the property is
indicated by a small arrow.
The procedure is the same for method calls: Insert the block 'ActiveX Method', wire it
and select the desired method in the pop up menu. Take care to only call a method at a
timed interval, or a specific event, do not call it continuously.
To close the Nanosurf Server you place the function block 'ActiveX Close' in the diagram
and wire its two inputs to the corresponding outputs of the 'ActiveX Open' block.

Refer to your LabView documentation and examples on ActiveX for more detailed
description on how to use the ActiveX function blocks.

4.5 Python

This section describes how to use Python to control Nanosurf instruments. The Python
scripts were tested with Python 3.8.

Quick installation procedure:

1. Ensure that Python is installed on the control computer. Windows 10 has Python
in Windows Store, but this source should not be used for our purpose. Instead,
use the latest Python release from www.python.org or Anaconda Python. Make
sure, it is installed for the current user, and not for all the users (requires
administrator rights). To test your Python installation, open the Windows
Command Prompt or the Windows PowerShell, type python there and press
Enter. You should see a Python prompt with the version number.

2. Install the Nanosurf Python module from PyPI, by opening the Windows Command
Prompt or Windows PowerShell and executing:

pip install nanosurf

or, if pip does not work due to network restrictions, by downloading the PyPI
package, unzipping it into a folder, and from this folder executing:

python setup.py install

3. Start the Nanosurf software, make sure it is communicating with the controller

https://www.python.org/

17Integration

©2022 by Nanosurf, all rights reserved

(although the basic functionality would also work in the simulation mode).

4. Check that a valid “Scripting Interface” code is entered in the Nanosurf software,
under File -> Options -> Access Codes.

5. Python scripts can be edited with Notepad and executed in a Windows Command
Prompt, but we suggest using Visual Studio Code editor (code.visualstudio.com),
or any other code editor.

Example script:

import nanosurf

Create control object for the Nanosurf SPM controller.
spm = nanosurf.SPM()
application = spm.application
application.AutoExit = False

Creating various objects for the system control
scan = application.Scan
zcontroller = application.ZController

For example, we would like to change the Z controller settings
zcontroller.SetPoint = 70 # Set the setpoint to 70%
zcontroller.PGain = 3100 # Set P-gain to 3100
zcontroller.IGain = 3500 # Set I-gain to 3500

Change the Scan settings
scan.ImageWidth = 10 * 1e-6 # Set width of scan to 10 um
scan.ImageHeight = 10 * 1e-6 # Set height of scan to 10 um
scan.CenterPosX = 1 * 1e-6 # X offset = 1 um
scan.CenterPosY = 5 * 1e-6 # Y offset = 5 um
scan.AutoCapture = True # Turn on end-of-frame data capture
scan.Start() # Starts scanning

To run the script, open your favorite terminal in the folder with the script and execute:

python your_script_name.py

Alternatively, use the terminal in the VSCode, or simply click the icon in the top right
corner.

https://code.visualstudio.com/

18 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

For a full list of the objects, and their methods and properties, read the Chapter 7. Object
Reference.

4.6 Others

The integration procedure in third party programs are different but mostly follow a
common structure.

If a program support COM Automation it either can call the server command directly
during runtime with late binding like Visual Basic or can create some wrapper class or
object with the help of the "Nanosurf_C3000.tlb" file:

With most of the interpreter languages like Visual Basic, JScript, Mathlab or Python
calling a COM Server object is done by defining a object variable and call a function like
CreateObject(), CreateDispatch() or similar.

Other compiled programs created with languages like Visual C++ or Delphi you have to
first create a proxy class in the language itself. Most development platform help the
programmer with a wizard to do this. The information for the proxy classes is extracted
from the file "Nanosurf_C3000.tlb" installed with the Nanosurfapplication itself in the C:
\Program files\Nanosurf\Nanosurf\Bin directory.

For more help read the documentation of your client application. if you do not found the
corresponding chapter easily search for keywords like "COM Automation", "ActiveX",
"OLE" or "Dispatch".

19Tutorial

©2022 by Nanosurf, all rights reserved

5 Tutorial

This chapter is a step by step tutorial which shows you the basic elements of a script and
how to control the microscope.

After the tutorial you should be able to write your own scripts and know how to use the
properties and functions of the Nanosurf software. You can then start exploring the object
reference chapter to learn all the details.

5.1 Script "AutoImage"

The tutorial script "AutoImage" is a example script which shows basic operating concepts
of the microscope. It performs an fully automated approach, measure a topography
image, calculates the min and max values and save the image into a document file.

The script is very modular and many passages can be reused in your own scripts. It shall
help you as an starting point for own script. More scripts you will find in the chapter Script
examples.

The script can be executed in the simulator or on a real sample. As a sample we use the
10um calibration grid found in your Toolbox. If you use a High Resolution Scanner the
scan range will be automatically reduced.

To follow the tutorial enter new script code step by step in the embedded "Script
Editor" (See Script editor) or in an external editor like Notepad.

The script will be developed and discussed in 7 steps

1. Step - Start the application, create the needed objects and release them
2. Step - Prepare the measurement, set operating mode and Z-Controller settings
3. Step - Approach to surface
4. Step - Scan an image
5. Step - Withdraw from surface
6. Step - Calculate the min and max z height value and display the result
7. Step - Save the image in a document to disk

If you do not like to type in the source by your self you find the source in the directory:

C:\Program files\Nanosurf\Nanosurf\Scripts\Examples

5.2 Start the application

Step 1 Start the application

First of all we will write a program version header and force the interpreter to allow only
predefined variables. This help avoiding typing error bug which are difficult to find.

'--

' Prog: AutoImage - Fully automated measurement of a image

'--

' Version 1.0 Nanosurf

20 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

'--

Option Explicit

Then we need access to the methods of the application. Therefore we create a object
variable with the root class "Application". If the application is not already started this will
start the software. Then we wait until the application is ready and have connected to the
Controller. This is done with our first usage of an internal method the application is
providing to us IsStartingUp. If you would like to get a full description about this method
read the description in the Object Reference Chapter section Class Application.

' startup application and get all needed objects

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

Do While objApp.IsStartingUp : Loop

Next we create object to all the sub modules we what to use. This will be the Approach
class for approaching, the Scan class for imaging, the OperatingMode class for setting up
the preferred mode and the z-controller class for defining setpoint etc. Our root object can
give us object variable to all theses classes.

Dim objAppr : Set objAppr = objApp.Approach

Dim objScan : Set objScan = objApp.Scan

Dim objOpMode : Set objOpMode = objApp.OperatingMode

Dim objZCtrl : Set objZCtrl = objApp.ZController

Again if you like to know more read the section Class Application.

Now we let some space for the code from step 2 to 7.

' insert code for step 2 - 6 here

At the end of the program listing we need to tell the application that we do not need the
object any longer and we free the object variable in the opposite order as we created
them.

MsgBox "End of script"

Set objZCtrl = Nothing

Set objOpMode = Nothing

Set objScan = Nothing

Set objAppr = Nothing

Set objApp = Nothing

Its time to save our work. Click "Save"-Button and call the file "AutoImage Tutorial.vbs".
The ".vbs" is important. This marks the file as a VBScript executable.

Now we would like to test the code we just wrote and run it.

If you wrote your script in the Script Editor Dialog please click "Run". The Position and the

21Tutorial

©2022 by Nanosurf, all rights reserved

Imaging Window should open and a message dialog telling "end of script". If there where
mistyping errors a dialog with a error message should appear.

If you wrote your script in an external editor, double click the saved file in the explorer. The
Nanosurf application should start and the starting up dialog should appear. The Position
and the Imaging Window should open and a message dialog telling "end of script". If there
where mistyping errors a dialog with a error message should appear.

In case of an error message return to the source code navigate to the reported text line
and correct the error. Save the file and run it again. Repeat this until no error occurs
anymore.

You are prepared now for Step 2 - Preparing the measurement

5.3 Preparing measurement

Step 2 Preparing the measurement

We write now the code for setting up everything right to be able to approach afterwards.

We will now take use of the created objects from Step 1 and define our desired operating
mode condition and z-controller settings useful for measuring on the 10um calibration
grid. To do this we will write values to some properties of the class OperatingMode and
ZController. Detailed explanation read in the appropriate section in chapter Object
Reference.

'--

' Step2: Preparing the measurement

'--

objOpMode.OperatingMode = 3 ' Dynamic mode

objOpMode.Cantilever = 1 ' NCLR

objOpMode.VibratingAmpl = 0.1 'V

objOpMode.AutoVibratingFreq = True

objZCtrl.SetPoint = 50 '%

objZCtrl.PGain = 10000

objZCtrl.IGain = 1500

That's for now. Save your work again. Run it.

Still no action is done but you should see in the Operating Mode Panel and the Z-Controller
Panel that the mode and the settings have been changed to the values we set in the
script. You see the script acts here like a user would do. The script could also read the
propertied values and get the result of direct user input.

You are now ready for approach. Go to Step 3.

22 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

5.4 Approaching the surface

Step 3 Approaching the surface

We write now the code for approaching automatically to the surface and check if
everything went well after it.

The class Approach is now our focus. The script is not moving fast to the surface as a
user would do in a first step because the script cannot interpret the video output and does
not know therefore when to stop close to the surface.

First we stop the automatically start of imaging after approach, this is nice for a user but
not for the script. Then we start the approach and wait until its finished.

'--

' Step3: Approaching the surface

'--

objAppr.AutoStartImaging = False

objAppr.StartApproach

Do While objAppr.IsMoving : Loop

No we have either approached to the surface or a error has occurred. We check this with
the method Status and proceed if everything is ok. If not we withdraw from the surface and
open a Dialog to display an error message.

If objAppr.Status = 3 Then

 ' insert script code of Step 4 to 7 here

Else ' approach error handling

 objAppr.StartWithdraw

 MsgBox "Approach error " & objAppr.Status & " occurred. Withdraw and exit."

 Do While objAppr.IsMoving : Loop

End If

That's for now. Save your work. To run it we have to be careful now because we move the
scan head to the sample if we use the real microscope! Prepare the sample put it under
the microscope and manually coarse approach the it. Now run the script. If you see in the
Video camera that anything is going wrong and the tip is crashing into the surface click
manually on "Retract".

We did our first real action. What is necessary is always to wait until the action is done if a
method's name is Start... to synchronize the script to the microscope. If you can do
something useful during the action. Just enter the script code in the Do While ... Loop!

Next we program the image script code. Go to Step 4.

23Tutorial

©2022 by Nanosurf, all rights reserved

5.5 Scan a surface

Step 4 Scan a surface

After the approach was successful we can prepare imaging and start the imaging
process. The class Scan doing all this for us.

First we set the imaging size and other properties to our desire. Insert the following code
in the If ... End If section of Step 3.

'--

' Step4: Scan a Surface

'--

Dim size : size = 50e-6 'm

objScan.ImageSize size,size

objScan.Scantime = 0.7 's

objScan.Points = 256

objScan.Lines = 256

The code above show how to use a variable to store constants and use it to deliver
arguments to a method.

No we start a single scan frame and wait until it's finished. During the wait we do some
fun. We print the current scan line in the status bar:

Dim curline

objScan.StartFrameUp

Do While objScan.IsScanning :

 curline = objScan.Currentline

 objApp.PrintStatusMsg "Current line = " & curline & ". Remaining lines = " &

(objScan.Lines - curline)

 objApp.Sleep 1.0 's

Loop

As mentioned in the previous step we can do some useful things in the while loop and do
not have just to wait! The code above shows how you can enhance the application and
add features by your self not provided by the software.

That's for now. Save your work. To run it you should first withdraw if not already done and
start then the script. When everything went ok we should be able to watch the script
approaching and measure an image. Look to the bottom left side of the status bars during
scanning.

If you would like to speed up the example image change number of lines or scan speed.

Next we withdraw from surface. Go to Step 5.

24 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

5.6 Withdraw tip from surface

Step 5 Withdraw from surface

To finish a measurement the tip should be retracted to a save position so that a user can
safely remove the sample without destroying the cantilever. Let's develop this code.

First we move carefully a small amount from the surface. Method StartWithdraw and a
wait loop is doing this.

'--

' Step5: Withdraw from surface

'--

objAppr.WithdrawSteps = 300

objAppr.StartWithdraw

Do While objAppr.IsMoving : Loop

Then we move away from surface to some larger distance. This is done by a fast Retract
which we stop after 3 seconds.

 objAppr.StartRetract

 objApp.Sleep 3.0 's

 objAppr.Stop

Save your work. Now you have a fully automated imaging script in hand.

But we will add some more features to it. Let's do some image analysis. Go to Step 6.

5.7 Simple image data analysis

Step 6 Image data analysis

As a post measuring image analysis we implement an algorithm which is detecting the
minimal and maximal z value measured.

The result is displayed in a message box dialog.

To do this we need to read in all image values and remember the lowest and highest value
we find. This is don in a two nested loops over all scan lines and all data points per scan
line. The function GetLine is providing us with the data values as a string. We convert this
into a VBScript array and process the values.

'--

' Step6: Image analysis. Find min and max value

'--

Dim scanstring

Dim scanarray

Dim scanline

Dim point

Dim datavalue

Dim min : min = +1.0 ' start value

Dim max : max = -1.0

25Tutorial

©2022 by Nanosurf, all rights reserved

' loop through all scan lines and get the values

For scanline = 0 To objScan.Lines-1

 scanstring = objScan.GetLine(0,1,scanline,0,1) ' Z-Topography channel, Filter

RAW, Physical units

 objApp.PrintStatusMsg "Processing line " & scanline

 ' search all data points in a scan line

 scanarray = Split(scanstring,",")

 For Each point In scanarray

 datavalue = CDbl(point)

 ' check range

 If datavalue < min Then

 min = datavalue

 End If

 If datavalue > max Then

 max = datavalue

 End If

 Next

Next

MsgBox "Min value is " & FormatNumber(min*1e6,3) & "um. Max value is " &

FormatNumber(max*1e6,3) & "um"

Save your work. To test the calculation of this section create a new script just with the
algorithm. First enter the code of step 1 and then insert at the comment just this code of
step 6. Now run the new script. It is using the last measured image for it analysis.

Next we want do save the measured image. Go to Step 7.

5.8 Document handling

Step 7 Document handling

A good measurement is worth to be stored to disk. Therefore we create a new image
document window with the contents of the Imaging Window and save the document to
disk. We will ask the user about the filename in a input dialog.

'--

' Step7: Document handling. Save the scanned image to disk

'--

objScan.StartCapture

Dim objDoc : Set objDoc = objApp.DocGetActive()

Dim filename : filename = InputBox("Please enter a filename:")

If filename <> "" Then

 objDoc.Save(filename)

End If

We are at the end of the tutorial. Please run the full script once through and think about
what's going on during the automated process is running.

26 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Hopefully you enjoyed writing this little example and got the kick to write your own script.

Remember you can create also object from other programs like Word or Excel and
control them too! What's about storing the result of a image or spectroscopy directly in an
Excel sheet ?

6 Script examples

In this chapter we provide additional example scripts to give you more ideas what you
could do with the scripting technology.

You find the source of this scripts

at C:\Program files\Nanosurf\Nanosurf\Scripts

or C:\Program files\Nanosurf\Nanosurf\Scripts\Examples

Table of example scripts:

Script name Description

Imaging Adjust XY-Slope Adjust the property X/Y-Slopes automatically

Create Height Histogram Create a new document with a height histogram chart

Erase glitch from line Removes measurement errors in the current line

Export data to CSV with
Header

Saves data points to a file in a custom defined format

Timed Imaging Measure multiple images with a delay between the scans. Auto
saving and filename generation is included.

Lithography Scratch a shape onto a soft surface by moving the tip with high force
over the sample.

6.1 Imaging Adjust XY-Slope

This example demonstrates how calculate and correct the XY-Slopes during scan
automatically.

Traditional slope compensation is a time consuming process and needs many steps to
perform until the slopes are compensated

This script is performing all necessary steps involved to do this task. It executes the
following:

Step 1 Start a 0° Rotated Image Frame
Step 2 Read the last scan line and calculates the slope by Linear Regression algorithm
Step 3 Start a 90° rotated image frame

27Script examples

©2022 by Nanosurf, all rights reserved

Step 4 Read the last scan line and calculates the slope by Linear Regression algorithm
Step 5 store the calculated slope values to X and Y-Slope property of the Scan object

Source

'--

' Script: Imaging Adjust XY-Slope

'--

' Calculates the 0 and 90 degree slope and

' adjusts both SlopeX and Y Parameter.

'

' This script is useful during imaging.

' It automates the slope correction process which

' would be a manual task.

'

'--

' v1.2 5.8.2005, D.Braendlin, Nanosurf AG

'--

Option Explicit

Dim objApp : Set objApp = SPM.Application

Dim objScan : Set objScan = objApp.Scan

Call Main()

Set objScan = Nothing

Set objApp = Nothing

'--

Sub Main()

'--

 Dim rot : rot = objScan.Rotation

 Dim ok : ok = vbFalse

 If Not objApp.IsObj(objScan) Then

 MsgBox "Error: Imaging window not active.",vbOKOnly,"Adjust XY-Slopes Script"

 Exit Sub

 End If

 ' adjust x axis

 objScan.Rotation = 0

 objScan.StartFrameUp

 ok = AdjustFastSlope()

 If ok Then

 ' adjust y axis

 objScan.Rotation = 90

 objScan.StartFrameUp

 ok = AdjustFastSlope()

 End If

 If Not ok Then

 MsgBox "Error: Rotation outside bounds.",vbOKOnly,"Adjust XYSlopes Script"

 End If

 objScan.Rotation = rot

End Sub

'--

Function AdjustFastSlope()

28 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

'--

 AdjustFastSlope = vbTrue

 If objScan.GetFrameDir() <> 0 Then

 Do While (objScan.Currentline < 0) And objScan.IsScanning : Loop

 End If

 Dim RefLine : RefLine = objScan.Currentline

 If RefLine < 0 Then

 AdjustFastSlope = vbFalse

 Exit Function

 End If

 Dim FastSlope : FastSlope = CalcImageingSlope(RefLine)

 Dim maxdeviation : maxdeviation = 10 'degree

 If abs(objScan.Rotation) < maxdeviation Then

 objScan.SlopeX = objScan.SlopeX - FastSlope

 ElseIf abs(objScan.Rotation - 90) < maxdeviation Then

 objScan.SlopeY = objScan.SlopeY - FastSlope

 ElseIf abs(objScan.Rotation - 180) < maxdeviation Then

 objScan.SlopeX = objScan.SlopeX + FastSlope

 ElseIf abs(objScan.Rotation + 90) < maxdeviation Then

 objScan.SlopeY = objScan.SlopeY + FastSlope

 Else

 AdjustFastSlope = vbFalse

 Exit Function

 End If

End Function

'--

Function CalcImageingSlope(scanline_In)

'--

 Dim slope : slope = 0.0

 Dim i : i = 0

 Dim dataline : dataline = objScan.GetLine(0,1,scanline_In,0,1)

 Dim zarray : zarray = split(dataline,",")

 Dim xstep : xstep = objScan.ImageWidth / (objScan.Points -1)

 Dim xarray : ReDim xarray(UBound(zarray))

 xarray(0) = 0.0

 For i=1 To (UBound(xarray))

 xarray(i) = xstep*i

 Next

 Dim lin_coeff

 Dim ok : ok = CalcLinearRegress(xarray,zarray,lin_coeff)

 If ok Then

 slope = lin_coeff(1) * 180.0 / 3.14159265

 End If

 CalcImageingSlope = slope

End Function

'--

Function CalcLinearRegress(posarray_In,valarray_In, coeffarray_out)

'--

29Script examples

©2022 by Nanosurf, all rights reserved

 Dim points : points = UBound(posarray_In)

 Dim vals : vals = UBound(valarray_In)

 Dim i : i = 0

 Dim m : m = 0

 Dim q : q = 0

 CalcLinearRegress = vbFalse

 ' input check: array need to have same length

 If points <> vals Then

 Exit Function

 End If

 ' calc intermediat results

 Dim s_x : s_x = 0

 For i=0 To points

 s_x = s_x + posarray_In(i)

 Next

 Dim s_x2 : s_x2 = 0

 For i=0 To points

 s_x2 = s_x2 + posarray_In(i)*posarray_In(i)

 Next

 Dim s_y : s_y = 0

 For i=0 To points

 s_y = s_y + valarray_In(i)

 Next

 Dim s_xy : s_xy = 0

 For i=0 To points

 s_xy = s_xy + posarray_In(i)*valarray_In(i)

 Next

 Dim delta : delta = CalcDetOf2x2Matrix(points+1,s_x,s_x,s_x2)

 ' if slope not indefinit (90°) then calc q and m

 If delta <> 0 Then

 ' y = q + m*x

 q = 1.0 / delta * CalcDetOf2x2Matrix(s_y,s_x,s_xy,s_x2)

 m = 1.0 / delta * CalcDetOf2x2Matrix(points+1,s_y,s_x,s_xy)

 ReDim coeffarray_out(2)

 coeffarray_out(0) = q

 coeffarray_out(1) = m

 CalcLinearRegress = vbTrue

 End If

End Function

'--

Function CalcDetOf2x2Matrix(a11,a12,a21,a22)

'--

 CalcDetOf2x2Matrix = a11*a22 - a12*a21

End Function

30 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

6.2 Create Height Histogram

This example demonstrates how to analyse a data container and create a new document
with calculated data.

The script is calculating a height histogram of the data points of the selected data
container and create a line chart with the result in a new document.

This script is performing all necessary steps involved to do this task. It executes the
following:

Step 1 Check if a data container is selected
Step 2 Calculate value range
Step 3 Calculate height histogram
Step 4 Create a new document with a data container and a chart
Step 5 Saves the histogram result to new the data container

Source

'--

' Script: Histogram

'--

' Calculates a height histogram based of the active

' chart.

'--

' v1.1 1.8.2005, D.Braendlin, Nanosurf AG

'--

Option Explicit

Dim objApp : Set objApp = SPM.Application

Call Main()

'--

Sub Main()

'--

 ' get source data

 Dim objSrcDoc : Set objSrcDoc = objApp.DocGetActive()

 If Not objApp.IsObj(objSrcDoc) Then

 MsgBox "Error: No document loaded.",vbOKOnly,"Histogram Script"

 Exit Sub

 End If

 Dim objSrcData : Set objSrcData = objSrcDoc.DataGetActive()

 If Not objApp.IsObj(objSrcData) Then

 MsgBox "Please select a chart.",vbOKOnly,"Histogram Script"

 Exit Sub

 End If

 Call CreateHistogramDoc(objSrcData)

End Sub

'--

Sub CreateHistogramDoc(objSData)

'--

31Script examples

©2022 by Nanosurf, all rights reserved

 ' get data value range ------

 objApp.PrintStatusMsg "Calculating range ..."

 Dim maxval,minval

 CalcMinMax objSData,0,1, minval, maxval

 ' prepare histogram container ------

 Dim objDestDoc : Set objDestDoc = objApp.DocCreate("",Nothing)

 Dim objDestData : Set objDestData = objDestDoc.DataCreate(-1,-1,Nothing)

 objDestDoc.DataSetGroupName objDestData.GetGroup(),"Histogram"

 objDestData.Lines = 1

 objDestData.Points = 256

 objDestData.AxisPointMin = minval

 objDestData.AxisPointRange = (maxval - minval)

 objDestData.AxisPointName = "Height Distribution"

 objDestData.AxisPointUnit = objSData.AxisSignalUnit

 objDestData.AxisSignalMin = -32768

 objDestData.AxisSignalRange = 65535

 objDestData.AxisSignalName = objSData.AxisSignalName

 objDestData.AxisSignalUnit = ""

 objDestData.AxisLineMin = 0

 objDestData.AxisLineRange = objDestData.Lines

 objDestData.AxisLineName = ""

 objDestData.AxisLineUnit = ""

 ' create histogram data -------------------------------------

 objApp.PrintStatusMsg "Calculating histogram ..."

 Dim h_max

 Dim histogram_vec : histogram_vec =

CalcHistogram(objSData,256,minval,maxval,h_max)

 Dim ok : ok = objDestData.SetLine(0,0,Join(histogram_vec,","))

 ' display histogram chart -------------------------

 Dim objDestChart : Set objDestChart = objDestDoc.ChartCreate(-1,Nothing)

 objDestChart.Type = 0 ' line chart

 objDestChart.Filter = 0

 objDestChart.Group = objDestData.GetGroup()

 objDestChart.Signal = objDestData.GetSignal()

 objDestChart.RangeSpan = h_max

 objDestChart.RangeCenter = h_max / 2

End Sub

'--

Function CalcHistogram(objData, resolution, min_val, max_val, h_max_out)

'--

 Dim histogram() : ReDim histogram(resolution-1)

 Dim maxvalue : maxvalue = 0

 Dim curlinestr, curlinearray, h, h_max

32 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

 Dim x,y

 h_max = 0

 If (min_val < max_val) Then

 For y = 0 To (objData.Lines-1)

 curlinestr = objData.GetLine(y,0,1)

 curlinearray = Split(curlinestr,",")

 For x = 0 To (objData.Points-1)

 h = (CDbl(curlinearray(x))-min_val)/(max_val-min_val) * (resolution-1)

 If (h>=0) And (h<resolution) Then

 histogram(h) = histogram(h) + 1

 If histogram(h) > h_max Then

 h_max = histogram(h)

 End If

 End If

 Next

 Next

 End If

 h_max_out = h_max

 CalcHistogram = histogram

End Function

'--

Sub CalcMinMax(objData, filter, mode, min_out, max_out)

'--

 Dim maxval : maxval = -1.0e100

 Dim minval : minval = +1.0e100

 Dim curdata, curarray, curvalue

 Dim x,y

 For y = 0 To (objData.Lines-1)

 curdata = objData.GetLine(y,filter,mode)

 curarray = Split(curdata,",")

 For x = 0 To (objData.Points-1)

 curvalue = CDbl(curarray(x))

 If maxval < curvalue Then

 maxval = curvalue

 End If

 If minval > curvalue Then

 minval = curvalue

 End If

 Next

 Next

 max_out = maxval

 min_out = minval

End Sub

6.3 Erase glitch from line

This example demonstrates in place data modification.

This script is modifying the measured data and removes measurement error like jumps in
height or small glitches occurring only in one data line.

It calculates new values for the current selected data line by replacing the data points with

33Script examples

©2022 by Nanosurf, all rights reserved

the average of the points of its neighbor lines.

This script is performing all necessary steps involved to do this task. It executes the
following:

Step 1 Check if a data container is selected
Step 2 Extract the two neighbor lines of the selected one
Step 3 Replace the selected line with the average of the two other lines

Source

'--

' Script: Erase glitch from line

'--

' Removes glitches from single data lines.

'

' The current line of the active chart is processed.

'

' The allgorithm uses the two neighbour lines as

' references and calculates new data values.

'--

' v1.1 9.8.2005, D.Braendlin, Nanosurf AG

'--

Option Explicit

Dim objApp : Set objApp = SPM.Application

Call Main()

Set objApp = Nothing

'--

Sub Main()

'--

 ' get source data

 Dim objSrcDoc : Set objSrcDoc = objApp.DocGetActive()

 If Not objApp.IsObj(objSrcDoc) Then

 MsgBox "Sorry, no document selected.",vbOKOnly,"Erase glitch"

 Exit Sub

 End If

 Dim objSrcData : Set objSrcData = objSrcDoc.DataGetActive()

 If Not objApp.IsObj(objSrcData) Then

 MsgBox "Please select a chart.",vbOKOnly,"Erase glitch"

 Exit Sub

 End If

 Dim ok : ok = RemoveSpikes(objSrcData,objSrcData.Currentline)

 If Not ok Then

 MsgBox "Sorry, this data cannot be processed." & vbCRLF & "Not enough

lines.",vbOKOnly,"Erase glitch"

 End If

End Sub

'--

Function RemoveSpikes(objData,Line)

34 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

'--

 RemoveSpikes = vbFalse

 If Not objApp.IsObj(objData) Then

 Exit Function

 End If

 If (Line >= objData.Lines) Or (Line < 0) Or (objData.Lines < 2) Then

 Exit Function

 End If

 ' get first referenc line

 Dim line1data

 If Line < (objData.Lines-1) Then

 line1data = objData.GetLine(Line+1,0,0)

 Else

 line1data = objData.GetLine(Line-1,0,0)

 End If

 Dim line1array : line1array = Split(line1data,",")

 ' get second referenc line

 Dim line2data

 If Line > 0 Then

 line2data = objData.GetLine(Line-1,0,0)

 Else

 line2data = objData.GetLine(Line+1,0,0)

 End If

 Dim line2array : line2array = Split(line2data,",")

 ' get line of interest

 Dim curdata : curdata = objData.GetLine(Line,0,0)

 Dim curarray : curarray = Split(curdata,",")

 ' remove spikes

 Dim x

 For x = 0 To UBound(curarray)

 curarray(x) = (CInt(line1array(x)) + CInt(line2array(x))) / 2

 Next

 curdata = Join(curarray,",")

 objData.SetLine Line,0,curdata

 RemoveSpikes = vbTrue

End Function

6.4 Export data to CSV with Header

This example demonstrates how to program an export function which saves measured
data to a file.

The internal export function of the application is enough for most of the data export
requirements. But some times a user want to export data in a customized way. This script
demonstrates how to do this.

This script is performing all necessary steps involved to do this task. It executes the

35Script examples

©2022 by Nanosurf, all rights reserved

following:

Step 1 Check if a data container is selected
Step 2 Ask for a target filename
Step 3 Read all data from the container and saves them to file

Source

'--

' Script: Export data to CVS with Header

'--

' Saves current activated data to a file.

' The data is saved as a comma separated value list

' with a header

'--

' v1.1 1.8.2005, Pieter van Schendel, Nanosurf AG

'--

Option Explicit

Dim objApp : Set objApp = SPM.Application

Call Main()

Set objApp = Nothing

'--

Sub Main()

'--

 ' get source data --------

 Dim objSrcDoc : Set objSrcDoc = objApp.DocGetActive()

 If Not objApp.IsObj(objSrcDoc) Then

 MsgBox "Error: No document loaded.",vbOKOnly,"Export Script"

 Exit Sub

 End If

 Dim objSrcData : Set objSrcData = objSrcDoc.DataGetActive()

 If Not objApp.IsObj(objSrcData) Then

 MsgBox "Please select a chart.",vbOKOnly,"Export Script"

 Exit Sub

 End If

 ' Ask for file ------

 Dim comdlg : Set comdlg = CreateObject("MSComDlg.CommonDialog")

 comdlg.DialogTitle = "Export the data as:"

 comdlg.filter ="CSV file with header|*.csv"

 comdlg.MaxFileSize = 260

 comdlg.CancelError = False

 comdlg.ShowSave

 ' save to disk ------

 Dim targetfile : targetfile = comdlg.filename

 If targetfile <> "" Then

 ExpartDataToFile targetfile,objSrcData

 End If

End Sub

'--

36 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Sub ExpartDataToFile(filename,objdata)

'--

 ' Alloc objects ----

 Dim objFS : Set objFS = CreateObject("Scripting.FileSystemObject")

 Dim objFile: Set objFile= objFS.CreateTextFile(filename)

 ' write header -----

 objFile.WriteLine "#Points: " & objdata.Points

 objFile.WriteLine "#Lines : " & objdata.Lines

 objFile.WriteLine "#Width : " & objdata.AxisPointRange

 objFile.WriteLine "#Height: " & objdata.AxisLineRange

 ' write data -------

 Dim linedata

 Dim curline

 Dim lines : lines = objdata.Lines

 For curline = 0 To lines-1

 linedata = objdata.GetLine(curline,0,1) ' RAW data, physical units

 objFile.WriteLine linedata

 Next

 objFile.Close

 ' clean up objects ----

 Set objFile = Nothing

 Set objFS = Nothing

End Sub

6.5 Timer controlled imaging

This example demonstrates how to add a function to measure multiple images
autonomous.

If one want to study a surface sample over time to see drift or change in features a
possibility to do a series of measurements is needed.

To measure this series could be very time consuming and should be done automatically.

This script is doing exactly this. Measure a image, save it to disc , wait some time, and do
it again multiple time. It asks the user the amount of measurement to take, the delay time
between two measurements and a filename mask to know how to name the images.

The file mask is the path and the start of the resulting files. The script add to this mask a
counting number and the file extension (e.g A file mask of "D:\MyData\MyImages" creates
the images in the directory D:\MyData with names like MyImages1.nid, MyImages2.nid,
and so on).

Source

'--

' Prog: Timed Imaging - measure a set of images with delay and save the result to

disc

'--

' Version 1.0 Nanosurf

'--

37Script examples

©2022 by Nanosurf, all rights reserved

Option Explicit

' startup application and get all needed objects

Dim objApp : Set objApp = SPM.Application

Dim objScan : Set objScan = objApp.Scan

objScan.Stop

'--

' Preparing the measurement

'--

Dim dTotalImages : dTotalImages = 1

Dim dImageDelay : dImageDelay = 60.0

Dim strFilemask : strFilemask = "c:\Timed Image"

'--

' Ask user for details

'--

Dim retval

retval = InputBox("Please enter the number of images to take","Script

request",dTotalImages)

If retval >= 1 Then

 dTotalImages = retval

 retval = InputBox("Please enter the delay time between to images in [s]","Script

request",dImageDelay)

 If retval >= 1 Then

 dImageDelay = retval

 strFilemask = InputBox("Enter filename mask of the images. 'Cancel' if not

desired.","Script request",strFilemask)

 '--

 ' Measure the images

 '--

 Dim dCurImage:

 For dCurImage = 1 To CInt(dTotalImages)

 objApp.PrintStatusMsg "Measuring image " & FormatNumber(dCurImage,0) & " of "

& FormatNumber(dTotalImages,0)

 objScan.StartFrameUp

 Do While objScan.IsScanning : Loop

 objScan.StartCapture

 If strFilemask <> "" Then

 objApp.SaveDocument strFilemask & FormatNumber(dCurImage,0) & ".nid"

 End If

 If CInt(dCurImage) < CInt(dTotalImages) Then

 objApp.PrintStatusMsg "Waiting for " & FormatNumber(dImageDelay,0) & "s

until image " & FormatNumber(dCurImage+1,0) & " of " & FormatNumber(dTotalImages,0)

& " is taken."

 objApp.Sleep dImageDelay

 End If

38 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

 Next

 MsgBox "All images measured. End of script"

 Else

 MsgBox "Bad delay time. Script aborted."

 End If

Else

 MsgBox "Bad number of images. Script aborted."

End If

Set objScan = Nothing

Set objApp = Nothing

6.6 Lithography

The aim of this script example is to demonstrate the use of the lithography script
commands.

This example will scratch a square shape into a sample surface.

It moves first with low set point force to the start point of the square shape, increases the
set point and moves four times to scratch the square shape into the surface. After this is
completed, it decreases the set point again to a standard not modifying value.

Before you run the script mount your sample and approach to it. Take also an image of
the surface before you scratch the shape.

For more general information about lithography please refer to the "Operating Instructions"
manual.

Source

'--

' Script: Simple lithography (Lithomodule)

'--

' This script creates a square shape with

' an edge length of 20.0 micrometer.

'

' The AFM static deflection mode is used

' to scratch the shape.

'

'--

' v1.0 12.01.2009, Adrian Gersbach, Nanosurf AG

'--

Option Explicit

' startup application and get all needed objects

Dim objApp : Set objApp = SPM.Application

Dim objLitho : Set objLitho = objApp.Litho

Dim objScan : Set objScan = objApp.Scan

Call Main()

' clean up

Set objScan = Nothing

39Script examples

©2022 by Nanosurf, all rights reserved

Set objLitho = Nothing

Set objApp = Nothing

'--

Sub Main()

'--

 ' init variables

 Dim fTipSpeedUp : fTipSpeedUp = 8.0e-6

 Dim fTipSpeedDown : fTipSpeedDown = 4.0e-6

 Dim nXOffset : nXOffset = objScan.CenterPosX

 Dim nYOffset : nYOffset = objScan.CenterPosY

 Dim nZOffset : nZOffset = 0.0

 ' clean up command list

 objLitho.ClearCmdList

 ' add commands

 objLitho.AddCmd_PenUp

 ' set opmode (AFM static deflection mode)

 objLitho.OperatingMode = 2

 ' set tipvoltage to 0.0 V

 objLitho.AddCmd_TipVoltage 0.0

 ' set setpoint to 15.0uN

 objLitho.AddCmd_SetPoint 15.0e-6

 objLitho.AddCmd_TipSpeed fTipSpeedUp

 ' move tip to start position

 objLitho.AddCmd_MoveTip 10.0e-6 + nXOffset, 10.0e-6 + nYOffset, 0.0 + nZOffset

 ' lower tip to start litho

 objLitho.AddCmd_PenDown

 objLitho.AddCmd_TipSpeed fTipSpeedDown

 ' create a square shape

 objLitho.AddCmd_MoveTip +10.0e-6 + nXOffset, -10.0e-6 + nYOffset, 0.0 + nZOffset

 objLitho.AddCmd_MoveTip -10.0e-6 + nXOffset, -10.0e-6 + nYOffset, 0.0 + nZOffset

 objLitho.AddCmd_MoveTip -10.0e-6 + nXOffset, +10.0e-6 + nYOffset, 0.0 + nZOffset

 objLitho.AddCmd_MoveTip +10.0e-6 + nXOffset, +10.0e-6 + nYOffset, 0.0 + nZOffset

 ' retract tip

 objLitho.AddCmd_PenUp

 objLitho.AddCmd_TipSpeed fTipSpeedUp

 ' move tip to center position

 objLitho.AddCmd_MoveTip 0.0 + nXOffset, 0.0 + nYOffset, 0.0 + nZOffset

 ' start lithography session

 objLitho.Start

 ' wait untill litho session is finished

 Do While objLitho.IsWorking : Loop

40 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

End Sub

7 Object Reference

This chapter describes in detail all the COM Interface objects of the Nanosurf program.

The complete functionality of the COM Interface is sorted in a hierarchical object structure.
Each sub object consists of a set of properties and methods for a special task.

The entry point of the class hierarchy is the COM class Nanosurf_C3000.Application for
external calls and SPM.Application for internal calls.

It is providing general application specific properties and methods and it is the root to all
other objects of the Nanosurf program.

An overview about the defined classes is shown in the following table:

Main Class Function

Application Global application specific functions

Online Objects

System Provides general online relevant system access functions

Approach Controls the approach process

Litho Provides lithography functions.

Scan Controls the imaging process

Spec Provides spectroscopy functions

ZController Z controller feedback loop settings

OperatingMode Sensor operating mode and mode depending settings

Video Video observation camera settings

ScanHead Provides scan head functions

SignalIO Provides IO functions

CantileverList Provides access function to the cantilever database

SPMCtrlManager Provide access to advanced function of the C3000 controller

Stage Provides access to the stage backend

BatchManager Provides access to the batch manager backend

Data Processing
Objects

Document Represents a document with charts of measured data (as stored in
nid-Files)

41Object Reference

©2022 by Nanosurf, all rights reserved

Chart Controls the visual representation of data values

Data Represents a block of data for a signal

Info Represents a set of measurement header information

7.1 Application

The Application class is providing general application specific properties and methods.

It is also the root for online classes which are provided as a property with the same name
as the class name.

Access to stored data are given by references to Document class objects by another set
of methods.

Retrieving a object pointer to the single instance of the Application class depends on the
origin of the caller:

From a script inside the Nanosurf program (e.g A script written in the Script Editor) there
is the named item SPM with the property Application. A call to SPM.Application returns
an object pointer to the single instance of this class.
From a external script (e.g WScript.exe) the script need to call
CreateObject("Nanosurf_C3000.Application"). This will return a object pointer to the
single instance of this class.

Table of properties of Application class:

Property name Purpose

Approach Returns a object pointer to the single Approach class object

BatchManager Returns a object pointer to the single BatchManager class object

Litho Returns a object pointer to the single Litho class object

Scan Returns a object pointer to the single Scan class object

ScanHead Returns a object pointer to the single ScanHead class object

SignalIO Returns a object pointer to the single SignalIO class object

Spec Returns a object pointer to the single Spec class object

Stage Returns a object pointer to the single Stage class object

OperatingMode Returns a object pointer to the single Operating class object

ZController Returns a object pointer to the single ZController class object

Video Returns a object pointer to the single Video class object

System Returns a object pointer to the single System class object

SPMCtrlManager Returns a object pointer to the single SPMCtrlManager class object

42 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

CantileverList Returns a object pointer to the single System class object

Version Returns the applications versions string

AutoExit Close the application after end of script

Simulation Enable Simulation of Microscope

StatusReadDelay Sets the delay time used by all Status Properties read

Visible Show or hide the application

GalleryHistoryAutoIndexing Toggle auto-indexing when saving measurement files

Table of methods of Application class:

Methode name Purpose

DocCount Return the number of open documents

DocCreate Create a new document object

DocDeleteAll Delete all open documents

DocDeleteByName Delete document with given name

DocDeleteByPos Delete document at given position

DocGetActive Return document object to current document

DocGetByName Return document object with given name

DocGetByPos Return document object at given position

GetGalleryHistoryDirectoryPath Returns the actual path where the history files are stored

SetGalleryHistoryDirectoryPath Defines the actual path where the history files are stored

GetGalleryHistoryFilenameMask Returns the current history filename mask

SetGalleryHistoryFilenameMask Defines the history filename mask

GetGalleryHistoryFilenameIndex Returns the history filename index

SetGalleryHistoryFilenameIndex Defines the history filename index

GetScriptDirectoryPath Returns the actual path where the script files are stored

SetScriptDirectoryPath Defines the actual path where the script files are stored

IsObj Checks if a given object variable is valid or not

IsStartingUp Monitors the application initialization process

LoadCalibration Load a new scan head calibration from a hed-file

LoadChartArrangement Load a set of charts from file

LoadDocument Load a image document from file

LoadParameter Load a set of parameter from file

43Object Reference

©2022 by Nanosurf, all rights reserved

LoadWorkspace Load a new workspace configuration from file

Log Simple logging of some message string

LogEx Log a message with specific channel and log level

LogUserMarker Generate a user marker into the log system

PrintStatusMsg Print a message in the status bar

SaveCalibration Save current scan head calibration to file

SaveChartArrangement Saves current set of charts to file

SaveDocument Save current selected image document to file

SaveParameter Saves current set of parameter to file

SaveWorkspace Save current workspace configuration to file

Sleep Wait some seconds

7.1.1 Properties

7.1.1.1 Application::Approach

Returns a dispatch pointer to the sub class Approach. This property is read only.

Syntax

application.Approach [read only]

Result

The Approach property is returning a pointer to the IDispatch interface of the Approach
object.

Remarks

Only one single instance exists of Approach object. All successive read of this property
will return the same IDispatch pointer. A read of this property will also open the
"Position Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objAppr : Set objAppr = objApp.Approach

' do something with the object

44 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

' clean up

objAppr = nul : Set objAppr = Nothing

objApp = nul : Set objApp = Nothing

See also

Class Approach

7.1.1.2 Application::AutoExit

Returns or set the action at script termination.

Syntax

application.AutoExit [= flag]

Setting

Argument Type Description

flag Boolean Set to True if the application should close after last reference to
Application object is released otherwise to False

Remarks

The AutoExit property is used when the script want to control the Nanosurf program
fully automatically and handle the startup and closing by itself. Set this property to True
anytime after startup is finished.

If AutoExit is set the application is closed after releasing the last reference to the
application object.

Example

' open application

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

Do While objApp.IsStartingUp : Loop

' do something

....

' close application program

objApp.AutoExit = True

objApp = nul : Set objApp = Nothing

45Object Reference

©2022 by Nanosurf, all rights reserved

See also

Method IsStartingUp

7.1.1.3 Application::BatchManager

Returns a dispatch pointer to the sub class BatchManager. This property is read only.

Syntax

application.BatchManager [read only]

Result

The BatchManager property is returning a pointer to the IDispatch interface of the
BatchManager object.

Remarks

Only one single instance exists of the BatchManager object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objBatchManager : Set objBatchManager = objApp.BatchManager

' do something with the object

' clean up

objBatchManager = nul : Set objBatchManager = Nothing

objApp = nul : Set objApp = Nothing

See also

Class BatchManager

46 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.1.1.5 Application::Litho

Returns a dispatch pointer to the sub class Litho. This property is read only.

Syntax

application.Litho [read only]

Result

The Litho property is returning a pointer to the IDispatch interface of the Litho object.

Remarks

Only one single instance exists of Litho object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the
"Lithography Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objLitho : Set objLitho = objApp.Litho

' do something with the object

' clean up

objLitho = nul : Set objLitho = Nothing

objApp = nul : Set objApp = Nothing

See also

Class Litho

7.1.1.6 Application::OperatingMode

Returns a dispatch pointer to the sub class OperatingMode. This property is read only.

Syntax

application.OperatingMode [read only]

Result

47Object Reference

©2022 by Nanosurf, all rights reserved

The Operating property is returning a pointer to the IDispatch interface of the
OperatingMode object.

Remarks

Only one single instance exists of OperatingMode object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objOpMode : Set objOpMode = objApp.OperatingMode

' do something with the object

' clean up

objOpMode = nul : Set objOpMode = Nothing

objApp = nul : Set objApp = Nothing

See also

Class OperatingMode

7.1.1.7 Application::Scan

Returns a dispatch pointer to the sub class Scan. This property is read only.

Syntax

application.Scan [read only]

Result

The Scan property is returning a pointer to the IDispatch interface of the Scan object.

Remarks

Only one single instance exists of Scan object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the "Imaging
Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to

48 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objScan : Set objScan = objApp.Scan

' do something with the object

' clean up

objScan = nul : Set objScan = Nothing

objApp = nul : Set objApp = Nothing

See also

Class Scan

7.1.1.8 Application::ScanHead

Returns a dispatch pointer to the sub class ScanHead. This property is read only.

Syntax

application.ScanHead [read only]

Result

The ScanHead property is returning a pointer to the IDispatch interface of the
ScanHead object.

Remarks

Only one single instance exists of ScanHead object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objScanHead : Set objScanHead = objApp.ScanHead

' do something with the object

49Object Reference

©2022 by Nanosurf, all rights reserved

' clean up

objScanHead = nul : Set objScanHead = Nothing

objApp = nul : Set objApp = Nothing

See also

Class ScanHead

7.1.1.9 Application::ShowWindow

Defines the display style of the main window.

Syntax

application.ShowWindow(style)

Arguments

Argument Type Description

style short Visibility style number

Result

None.

Remarks

The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example

objApp.ShowWindow(0) ' hide the imaging window

See also

 Application::Visible

50 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.1.1.10 Application::SignalIO

Returns a dispatch pointer to the sub class SignalIO. This property is read only.

Syntax

application.SignalIO [read only]

Result

The SignalIO property is returning a pointer to the IDispatch interface of the SignalIO
object.

Remarks

Only one single instance exists of SignalIO object. All successive read of this property
will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objSignalIO : Set objSignalIO = objApp.SignalIO

' do something with the object

' clean up

objSignalIO = nul : Set objSignalIO = Nothing

objApp = nul : Set objApp = Nothing

See also

Class SignalIO

7.1.1.11 Application::Simulation

Returns or set the interface mode. In simulation mode the program is using an internal
microscope simulation as target.

Syntax

application.Simulation [= flag]

51Object Reference

©2022 by Nanosurf, all rights reserved

Settings

Argument Type Description

flag Boolean Set to True if the application should simulate the microscope.

Set to False to use the real microscope.

Remarks

The Simulation property is defining the interface to the microscope. If this property is
set to True a program internal simulation of a microscope and a surface is used. Most
of the functionality of the real scope is simulated.

Switching between simulation and real microscope can be performed any time. Each
microscope is initialized at switching. Use property IsStartingUp to wait for the end of
the switch.

A virtual surface can be imaged with the "Imaging Window" or the Scan object, with the
"Spectroscopy Window" or the Spec object a Tip Potential modulation can be
performed.

OperatingMode, ZController and Video object settings are not simulated and have no
influence in the simulation.

Example

' open application

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

Do While objApp.IsStartingUp : Loop

objApp.Simulation = True

Do While objApp.IsStartingUp : Loop

See also

Class Scan, Spec, Property IsStartingUp

7.1.1.12 Application::Spec

Returns a dispatch pointer to the sub class Spec. This property is read only.

Syntax

application.Spec [read only]

Result

52 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The Spec property is returning a pointer to the IDispatch interface of the Spec object.

Remarks

Only one single instance exists of Spec object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the
"Specroscopy Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objSpec : Set objSpec = objApp.Spec

' do something with the object

' clean up

objSpec = nul : Set objSpec = Nothing

objApp = nul : Set objApp = Nothing

See also

Class Spec

7.1.1.13 Application::SPMCtrlManager

The SPM control manager handles access to the SPM subsystem.

A object pointer to this class is provided by the Application.SPMCtrlManager object
property.

Table of properties for the SPMCtrlManager class:

Property name Purpose

LogicalUnit Returns a object pointer to the single LogicalUnit class object

DataBuffer Returns a object pointer to the single DataBuffer class object

DataStream Returns a object pointer to the single DataStream class object

MacroCmd Returns a object pointer to the single MacroCmd class object

53Object Reference

©2022 by Nanosurf, all rights reserved

7.1.1.14 Application::Stage

Returns a dispatch pointer to the sub class Stage. This property is read only.

Syntax

application.Stage [read only]

Result

The Stage property is returning a pointer to the IDispatch interface of the Stage object.

Remarks

Only one single instance exists of the Stage object. All successive read of this property
will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objStage : Set objStage = objApp.Stage

' do something with the object

' clean up

objStage = nul : Set objStage = Nothing

objApp = nul : Set objApp = Nothing

See also

Class Stage

7.1.1.15 Application::StatusReadDelay

Returns or set time usd to delay a read request by all status properties.

Syntax

application.StatusReadDelay [= time]

Settings

54 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument Type Description

time float Set or read the time used to delay each status request. Default value is
0.3s

Remarks

The StatusReadDelay property defines the time a status property waits until its read
the new status and return its value to the caller function.

During this wait time the Nanosurf application still performs its operation and is not
delayed.
The usage of this delay is to lower the CPU usage during a wait loop until a certain
status is reached by the script program.

All 'obj.Is...' properties of the online classes are using these delay timer (e.g
objScan.IsScanning, objAppr.IsMoving, ...) .

The default value of 0.3s can be overwritten by setting the registry key 'Nanosurf/
Application/ScriptingStatusReadDelay=0.3'

Example

' open application

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

objApp.StatusReadDelay = 0.0

Do While objApp.IsStartingUp : Loop

See also

All Is... properties of classes Approach, Scan, Spec, OperatingMode, ZController

7.1.1.16 Application::System

Enter topic text here.

7.1.1.18 Application::Video

Returns a dispatch pointer to the sub class Video. This property is read only.

Syntax

application.Video [read only]

Result

The Video property is returning a pointer to the IDispatch interface of the Video object.

55Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

Only one single instance exists of Video object. All successive read of this property will
return the same IDispatch pointer. A read of this property will also open the "Position
Window" in the user interface.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objVideo : Set objVideo = objApp.Video

' do something with the object

' clean up

objVideo = nul : Set objVideo = Nothing

objApp = nul : Set objApp = Nothing

See also

Class Video

7.1.1.19 Application::Visible

Returns or set the interface mode. In simulation mode the program is using an internal
microscope simulation as target.

Syntax

application.Visible [= flag]

Settings

Argument Type Description

flag Boolean Set "True" to show the application

Set "False" to hide the application

Remarks

If the application is started up using the COM interface it is hidden unless the user sets
"Visible" to "True".

56 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Example

' open application

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

objApp.Visible = true

objApp.Visible = false

objApp = nul : Set objApp = Nothing

See also

Application::ShowWindow

7.1.1.20 Application:GalleryHistoryAutoIndexing

Returns or set auto-indexing when creating filenames for NID files.

Syntax

application.GalleryHistoryAutoIndexing [= flag]

Settings

Argument Type Description

flag Boolean Set "True" to enable auto-indexing (default)

Set "False" to disable auto-indexing

Remarks

If the filemask doesn't specify [INDEX] keyword, it is added when auto-indexing is
enabled.
If auto-indexing is disabled, [INDEX] is not added if it missing.
To have effect, it must be called before Application::SetGalleryHistoryFileMask.

Example

' open application

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

objApp.GalleryHistoryAutoIndexing = false

objApp.SetGalleryHistoryFilenameMask("MyUniqueImage")

objApp = nul : Set objApp = Nothing

See also

57Object Reference

©2022 by Nanosurf, all rights reserved

Application::SetGalleryHistoryFileMask

7.1.1.21 Application::ZController

Returns a dispatch pointer to the sub class ZController. This property is read only.

Syntax

application.ZController [read only]

Result

The ZController property is returning a pointer to the IDispatch interface of the
ZController object.

Remarks

Only one single instance exists of ZController object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objCtrl : Set objCtrl = objApp.ZController

' do something with the object

' clean up

objCtrl = nul : Set objCtrl = Nothing

objApp = nul : Set objApp = Nothing

See also

Class ZController

7.1.2 Methods

7.1.2.1 Application::DocCount

Return the number of open documents

Syntax

58 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

val = app.DocCount()

Arguments

none.

Result

Result Type Description

val short Returns the number of open document.

Remarks

The DocCount method counts the number of open document windows.

Example

docs = objApp.DocCount()

See also

DocGetByPos Method.

7.1.2.2 Application::DocCreate

Returns a new document class object.

Syntax

objDoc = app.DocCreate(filename,srcobj)

Arguments

Argument Type Description

filename string the document is loaded from disk or not if argument is ""

srcobj object the contents of the source document is copied if srcobj is not Nothing

Result

Result Type Description

objDoc Object Returns a IDispatch object for the document at position pos or an invalid
object

59Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

The DocCreate method returns a IDispatch object to a newly created document. The
new document is completely empty with no data objects, no info sections and no
charts. If the new document is a valid object can be checked by objApp.IsObj().

If the argument filename is not empty the contents of this NID-File is loaded into the
document.
If the argument srcobj is a valid document object its contents it copied into the new
document.
If both argument are defined the NID-File is loaded.

Example

' create a new empty document

Set objDoc = objApp.DocCreate("",Nothing)

' create a new document and load data from file

Set objDoc = objApp.DocCreate("MyDocument.nid",Nothing)

If Not objApp.IsObj(objDoc) Then

 MsgBox "File not found"

End If

' Copy current active document

Set objSrcDoc = objApp.DocGetActive()

Set objDoc = objApp.DocCreate("",objSrcDoc)

See also

Class Document, DocGetActive Method, IsObj Method

7.1.2.3 Application::DocDeleteAll

Close all open documents

Syntax

done = app.DocDeleteAll()

Arguments

None.

Result

Result Type Description

done Boolean Returns True if all document could be closed otherwise False

60 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

The DocDeleteAll method closes all open documents.

Example

' close all documents

ok = objApp.DocDeleteAll()

If objApp.DocCount() > 0 Then

 MsgBox "Error: Could not close all documents"

End If

See also

Class Document, DocCount Method

7.1.2.4 Application::DocDeleteByName

Deletes the document with a specified filename

Syntax

done = app.DocDeleteByName(filename)

Arguments

Argument Type Description

filename string Close the document with this name

Result

Result Type Description

done Boolean Returns True if the document could be closed otherwise False

Remarks

The DocDeleteByName method closes the document with the name filename.
The argument has to be a path string. If no document is found this method return False.

Example

' close active document

Set oDoc = objApp.DocGetActive()

If objApp.IsObj(oDoc) Then

 objApp.DocDeleteByName(oDoc.Name)

End If

61Object Reference

©2022 by Nanosurf, all rights reserved

See also

Class Document, DocGetActive Method, IsObj Method

7.1.2.5 Application::DocDeleteByPos

Deletes the n'th document

Syntax

done = app.DocDeleteByPos(pos)

Arguments

Argument Type Description

pos short Close the document at the specified position

Result

Result Type Description

done Boolean Returns True if the document could be closed otherwise False

Remarks

The DocDeleteByPos method closes the document at position pos.
The argument has to be positive and lower than the value return by DocCount().

Example

' close last document

objApp.DocDeleteByPos(objApp.DocCount() - 1)

See also

Class Document, DocCount Method, IsObj Method

7.1.2.6 Application::DocGetActive

Returns a Document class object of the currently selected document

Syntax

62 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objDoc = app.DocGetActive()

Arguments

none.

Result

Result Type Description

objDoc Object Returns a IDispatch object to the selected document or an invalid object
if none is selected

Remarks

The DocGetActive method returns a IDispatch object to the currently active or
selected document. The selected document has a highlighted title bar. If no document
is loaded or active an invalid object is returned. This can be checked by
objApp.IsObj().

Example

Set objDoc = objApp.DocGetActive()

If Not objApp.IsObj(objDoc) Then

 MsgBox "Please select an document"

else

 MsgBox "Current document is " & objDoc.Name

End If

See also

Class Document

7.1.2.7 Application::DocGetByName

Returns a Document class object with the specified name.

Syntax

objDoc = app.DocGetByName(name)

Arguments

Argument Type Description

name string Name of document

Result

63Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

objDoc Object Returns a IDispatch object to the document with the given name or an
invalid object if no document is not found

Remarks

The DocGetByName method returns a IDispatch object to the document with the
given name.
If no document with name is found a invalid object is returned. This can be checked by
objApp.IsObj().

The name of a document is its filename including the full path. The name of a
document which is not loaded from file or was never stored is its temporary filename
including the path to the backup directory.

Example

Set objDoc = objApp.DocGetByName("mydoc.nid")

If Not objApp.IsObj(objDoc) Then

 MsgBox "Document not loaded"

End If

See also

Class Document

7.1.2.8 Application::DocGetByPos

Returns a Document class object at the specified position.

Syntax

objDoc = app.DocGetByPos(pos)

Arguments

Argument Type Description

pos short Documents position number.

Result

Result Type Description

objDoc Object Returns a IDispatch object for the document at position pos or an invalid
object if pos >= DocCount()

64 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

The DocGetByPos method returns a IDispatch object to the document at the position.
If position is out of range an invalid object is returned. This can be checked by
objApp.IsObj().

The position is the index into an list which keeps track of all open documents and
represents the nth document window as shown in the pull down menu "Window".

Example

opendocs = objApp.DocCount()

For i = 0 To opendocs-1

 Set objDoc = objApp.DocGetByPos(i)

 MsgBox "Filename = " & objDoc.Name

End For

See also

Class Document, DocCount Method, DocGetByName Method

7.1.2.9 Application::GetGalleryHistoryDirectoryPath

Returns the history file path to the directory where all *.nid-files will be stored, when
captured.

Syntax

filePath = app.GetGalleryHistoryDirectoryPath()

Arguments

Argument Type Description

None

Result

Result Type Description

filepath String Returns a String

Remarks

None

65Object Reference

©2022 by Nanosurf, all rights reserved

Example

path = objApp.GetGalleryHistoryDirectoryPath()

MsgBox "Folder = " & path

See also

SetGalleryHistoryDirectoryPath

7.1.2.10 Application::GetGalleryHistoryFilenameIndex

Returns the index for the next file name.

Syntax

index = app.GetGalleryHistoryFilenameIndex()

Arguments

Argument Type Description

None

Result

Result Type Description

index Number Returns number > 0

Remarks

None

Example

index = objApp.GetGalleryHistoryFilenameIndex()

See also

 SetGalleryHistoryFilenameIndex

66 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.1.2.11 Application::GetGalleryHistoryFilenameMask

Returns a Document class object at the specified position.

Syntax

fileNameMask = app.GetGalleryHistoryFilenameMask()

Arguments

Argument Type Description

None

Result

Result Type Description

fileNameM
ask

String Returns a String containing the filename mask e.g. "image[INDEX]"

Remarks

Example

mask = objApp.GetGalleryHistoryFilenameMask()

See also

 SetGalleryHistoryFilenameMask

7.1.2.12 Application::GetScriptDirectoryPath

Returns the script file path to the directory where scripts are stored.

Syntax

filePath = app.GetScriptDirectoryPath(Index)

Arguments

Argument Type Description

Index Number 0 - Index for measurement scripts
1 - Index for analyzing scripts

Result

67Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

filepath String Returns a String

Remarks

None

Example

path = objApp.GetScriptDirectoryPath(0)

MsgBox "Folder = " & path

See also

SetScriptDirectoryPath

7.1.2.13 Application::IsObj

Checks if the specified object is valid

Syntax

ok = app.IsObj(object)

Arguments

Argument Type Description

object Object IDispatch object handler

Result

Result Type Description

ok Boolean Returns True if the IDispatch object is a valid object reference otherwise
False.

Remarks

The IsObj method checks if a COM Object variable is a valid interface to a IDispatch
interface or not.
If a method of any class is returning a object variable this method can check if the
return value is a valid interface or not.

68 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The IsObject() function of Visual Basic is only checking if the variable is of type
'Object' but not if the stored interface is really valid.

Example

objApp.DocDeleteAll ' make shure no document is open

Dim objDoc : Set objDoc = objApp.GetActiveDoc()

MsgBox objApp.IsObj(objDoc) ' display 'false' because no document is available

MsgBox IsObject(objDoc) ' display 'true' because variable is of type object

If objApp.IsObj(objDoc) Then

 MsgBox "Selected document is " & objDoc.Name

Else

 MsgBox "No document selected"

End If

See also

none.

7.1.2.14 Application::IsStartingUp

Checks if the Nanosurf is busy establishing the microscope connection.

Syntax

flag = application.IsStartingUp

Result

Result Type Description

flag Boolean Returns True if the application is busy with initialization of the
microscope.

Remarks

The IsStartingUp property is monitoring the startup or initialization process of the
Nanosurf program.
A script should wait until the startup process is finished before it sends the application
further commands.

Example

' open application

Dim objApp : Set objApp = CreateObject("Nanosurf_C3000.Application")

Do While objApp.IsStartingUp : Loop

69Object Reference

©2022 by Nanosurf, all rights reserved

' do something

....

See also

none.

7.1.2.15 Application::LoadCalibration

Loads a scan head calibration from file.

Syntax

ok = app.LoadCalibration(filename)

Arguments

Argument Type Description

filename String Path and filename of the calibration file. File extension should be
.hed

Result

Result Type Description

ok Boolean Returns True if the file could be loaded otherwise False.

Remarks

This method loads a scan head calibration from a file. The file is a special ini-file
formatted file with extension .hed.

Example

If objApp.LoadCalibration("10-07-233.hed") == False Then

 MsgBox "Could not load file!"

End If

See also

Method SaveCalibration

Version info

 Software v1.6.0 or later

70 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.1.2.16 Application::LoadChartArrangement

Loads a set of chart arrangement from file.

Syntax

ok = app.LoadChartArrangement(filename)

Arguments

Argument Type Description

filename String Path and filename of the chart file. File extension should be .chart

Result

Result Type Description

ok Boolean Returns True if the file could be loaded otherwise False.

Remarks

This method loads a set of chart arrangement from a file. The file is a special ini-file
formatted file with extension .chart.

Example

If objApp.LoadChartArrangement("mycharts.chart") == False Then

 MsgBox "Could not load file!"

End If

See also

Method SaveChartArrangement

7.1.2.17 Application::LoadDocument

Load a image document from file.

Syntax

ok = app.LoadDocument(filename)

Arguments

Argument Type Description

filename String Path and filename of the image document file. File extension

71Object Reference

©2022 by Nanosurf, all rights reserved

should be .nid

Result

Result Type Description

ok Boolean Returns True if the file could be loaded otherwise False.

Remarks

This method loads a image document from a file. The file is a Nanosurf special file
formate with extension .nid.

Example

If objApp.LoadDocument("mysample.nid") == False Then

 MsgBox "Could not load image!"

End If

See also

Method SaveDocument

7.1.2.18 Application::LoadParameter

Loads a set of parameters from file.

Syntax

ok = app.LoadParameter(filename)

Arguments

Argument Type Description

filename String Path and filename of the parameter file. File extension should be
.par

Result

Result Type Description

ok Boolean Returns True if the file could be loaded otherwise False.

Remarks

This method loads a set of parameters from a file. The file is a special ini-file formatted
file with extension .par.

72 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Example

If objApp.LoadParameter("mysample_settings.par") == False Then

 MsgBox "Could not load file!"

End If

See also

Method SaveParameter

7.1.2.19 Application::LoadWorkspace

Loads a workspace from file.

Syntax

ok = app.LoadWorkspacer(filename)

Arguments

Argument Type Description

filename String Path and filename of the workspace file. File extension should be
.gui

Result

Result Type Description

ok Boolean Returns True if the file could be loaded otherwise False.

Remarks

This method loads a workspace configuration from a file. The file is a special binary-file
formatted file with extension .gui.

Example

If objApp.LoadWorkspace("mysample.gui") == False Then

 MsgBox "Could not load file!"

End If

See also

Method SaveWorkspace

Version info

 Software v1.6.0 or later

73Object Reference

©2022 by Nanosurf, all rights reserved

7.1.2.20 Application::Log

Log a simple message string.

Syntax

app.Log(strMessage)

Arguments

Argument Type Description

strMessag
e

String Log message

Result

None

Remarks

This method logs the given string to the "Proxy" log channel with log level "Info". This
function is non blocking and asynchronously logs the message.

See also

Method LogEx, LogUserMarker

7.1.2.21 Application::LogEx

Log a message string on a channel with a log level.

Syntax

app.LogEx(strChannel, nLevel, strMessage)

Arguments

Argument Type Description

strChannel String Log channel

nLevel Severity Log level

strMessag
e

String Log message

74 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result

None

Remarks

This method logs the given string to the given log channel and log level. This function is
non blocking and asynchronously logs the message.

See also

Method Log, LogUserMarker

7.1.2.22 Application::LogUserMarker

Generate a user marker into the log system.

Syntax

app.LogUserMarker()

Arguments

None

Result

None

Remarks

This method logs a user marker to the "UserMarker" channel with a automatically
incremented number. This function is non blocking and asynchronously logs the
message.

See also

Method Log, LogEx

7.1.2.23 Application::PrintStatusMsg

Prints a message in the status tool bar.

Syntax

application.PrintStatusMsg(message)

Arguments

75Object Reference

©2022 by Nanosurf, all rights reserved

Argument Type Description

message String Text to print in the status tool bar

Remarks

This method print a text in the first pane of the status tool bar.

Example

objApp.PrintStatusMsg "Hello world!"

See also

none

7.1.2.24 Application::SaveCalibration

Save the current scan head calibration to file.

Syntax

ok = app.SaveCalibration(filename)

Arguments

Argument Type Description

filename String Path and filename of the target scan head calibration file. File
extension should be .hed

Result

Result Type Description

ok Boolean Returns True if the file could be saved otherwise False.

Remarks

This method saves the current scan head calibration to file. The file is a special ini-file
formatted file with extension .hed.

Example

If objApp.LoadCalibration("c:\mycalib\3-07-512-hed") == False Then

 MsgBox "Could not save file!"

End If

See also

76 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method LoadCalibration

Version info

 Software v1.6.0 or later

7.1.2.25 Application::SaveChartArrangement

Saves current set of chart arrangement to file.

Syntax

ok = app.SaveChartArrangement(filename)

Arguments

Argument Type Description

filename String Path and filename of the chart file. File extension should be .chart

Result

Result Type Description

ok Boolean Returns True if the file could be saved otherwise False.

Remarks

This method saves the current set of chart arrangement to file. The file is a special ini-
file formatted file with extension .chart.

Example

If objApp.SaveChartArrangement("mycharts.chart") == False Then

 MsgBox "Could not save file!"

End If

See also

Method LoadChartArrangement

77Object Reference

©2022 by Nanosurf, all rights reserved

7.1.2.26 Application::SaveDocument

Save current image document to file.

Syntax

ok = app.saveDocument(filename)

Arguments

Argument Type Description

filename String Path and filename of the image document file. File extension
should be .nid

Result

Result Type Description

ok Boolean Returns True if the file could be saved otherwise False.

Remarks

This method saves the current image document to file. The file is a Nanosurf special
file formate with extension .nid.

Example

' measure image

objScan.StartFrameUp

Do While objScan.IsScanning : Loop

' create image and save

objScan.StartCapture

If objApp.SaveDocument("mysample.nid") == False Then

 MsgBox "Could not save image!"

End If

See also

Method LoadDocument

7.1.2.27 Application::SaveParameter

Save the current set of parameters to file.

Syntax

ok = app.SaveParameter(filename)

78 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Arguments

Argument Type Description

filename String Path and filename of the target parameter file. File extension should
be .par

Result

Result Type Description

ok Boolean Returns True if the file could be saved otherwise False.

Remarks

This method saves the current set of parameters to file. The file is a special ini-file
formatted file with extension .par.

Example

If objApp.SaveParameter("mysample_settings.par") == False Then

 MsgBox "Could not save file!"

End If

See also

Method LoadParameter

7.1.2.28 Application::SaveWorkspace

SetGalleryHistoryDirectoryPathSetGalleryHistoryDirectoryPath

Save the current workspace configuration to file.

Syntax

ok = app.SaveWorkspace(filename)

Arguments

Argument Type Description

filename String Path and filename of the target workspace file. File extension
should be .gui

Result

Result Type Description

79Object Reference

©2022 by Nanosurf, all rights reserved

ok Boolean Returns True if the file could be saved otherwise False.

Remarks

This method saves the current workspace configuration to file. The file is a special
binary-file formatted file with extension .gui.

Example

If objApp.SaveWorkspacer("mysample.gui") == False Then

 MsgBox "Could not save file!"

End If

See also

Method LoadWorkspace

Version info

 Software v1.6.0 or later

7.1.2.29 Application::SetGalleryHistoryDirectoryPath

Defines the file path where captured data shall be stored.

Syntax

app.SetGalleryHistoryDirectoryPath(Path)

Arguments

Argument Type Description

Path String file path like "C:\some\path\to\a\folder"

Result

Result Type Description

None

Remarks

None

Example

80 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objApp.SetGalleryHistoryDirectoryPath("C:\Users\Public\Documents")

See also

GetGalleryHistoryDirectoryPath

7.1.2.30 Application::SetGalleryHistoryFilenameIndex

Defines the index for the next captured files.

Syntax

app.SetGalleryHistoryFilenameIndex(index)

Arguments

Argument Type Description

Index Number must be >= 0

Result

Result Type Description

None

Remarks

The SetGalleryHistoryFilenameIndex() method sets the start offset, meaning setting
the index to 0(Zero), the next created image will have the index 1(one).

Example

objApp.SetGalleryHistoryFilenameIndex(42)

See also

 GetGalleryHistoryFilenameIndex

7.1.2.31 Application::SetGalleryHistoryFilenameMask

Defines the filename mask for new captured files.

Syntax

81Object Reference

©2022 by Nanosurf, all rights reserved

app.SetGalleryHistoryFilenameMask(Mask)

Arguments

Argument Type Description

Mask String Filename mask. cannot contain white spaces or slashes. Possible
wild cards
[INDEX] = 00001.nid
[DATE]
[TIME]

the [INDEX] will always be appended no matter what!

Result

Result Type Description

None

Remarks

Example

objApp.SetGalleryHistoryFilenameMask("MyFancyExperiment_[INDEX]")

See also

 GetGalleryHistoryFilenameMask

7.1.2.32 Application::SetScriptDirectoryPath

Defines the file path where scripts are stored.

Syntax

app.SetScriptDirectoryPath(Index, Path)

Arguments

Argument Type Description

Index Number 0 - Index for measurement scripts
1 - Index for analyzing scripts

Path String file path like "C:\some\path\to\a\folder"

Result

82 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result Type Description

None

Remarks

None

Example

objApp.SetScriptDirectoryPath(0, "C:\Users\Public\Documents")

See also

GetScriptDirectoryPath

7.1.2.33 Application::Sleep

Delay the script execution.

Syntax

application.Sleep(time)

Arguments

Argument Type Description

time double Delay time in [s].

Remarks

This method delay the execution of the script by the amount of seconds given as
argument. The delay precision depends on the workload of the PC and should not be
used as a precision timer. Minimal delay is 50ms.

Example

' do something

objApp.Sleep(30.0) '[s]

' do something else

See also

none

83Object Reference

©2022 by Nanosurf, all rights reserved

7.2 Approach

The Approach class handles the microscope's approach system.

Controlling the coarse distance between the sensor tip and the sample surface is the
main goal of this class. This process can be divided into two separate phases:

The sensor can be moved fast toward or away from the surface with the methods
StartAdvance and StartRetract.

The critical action of finally closing the distance between sample and tip until the z
feedback controller can sense the surface is done by StartApproach. A first release of
the contact is done by StartWithdraw.

All movements are asynchronously handled by the microscope control electronics. To
stop any movement call the method Stop. To know if a movement is in process call
IsMoving. To know if a movement was successful or not call method Status.

A object pointer to this class is provided by the Application.Approach object property.

Table of properties for Approach class:

Property name Purpose

ApproachSpeed Define the speed used by StartApproach()

WithdrawSpeed Define the speed used by StartWithdraw()

ApproachMaxSteps Defines the maximal retries during an automatic approach

AutoStartImaging This flags defines if the imaging process is started after approach

AutoReloadSettings This flag defines if prior a approach the parameters are load from file

ShowApproachDoneDialog Defines if the success dialog is shown or not

ApproachPos Defines the tip position during approach or readjust the position

IsMoving Retrieve the information whether a movement is in process or not

AFMApproachMode Define the approach mode

AFMStepByStepSpeed Define the speed of movement in Step-By-Step approach mode

AFMStepByStepRange Define the move range in Step-By-Step approach mode

Table of methods for Approach class:

Method name Purpose

ShowWindow Controls the visibility of the imaging window

84 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

StartApproach Starts the automatic final approach toward sample

StartWithdraw Retract the sensor from surface by a controlled small
amount

StartAdvance Start a fast movement toward sample

StartRetract Start a fast movement away from sample

StartHome Start a fast movement until the home position is reached

Stop Stop any movement

Status Retrieve the current status of a movement

ForceApproachStatus Sets the approach status to a given state value

ZMotorStep Performs a Z motor step

ZMotorStepStop Stops Z motors step

ForceZMotorPosUpdate Requests an update of the Z motor positions

ZMotorSetPosZero Sets current position of given Z Motor to 0.0

LevelScanhead Levels the scanhead

ZMotorReference References Z Motors

ZMotorReferenceAndMoveBack References Z Motors and goes back to the previous position

IsZMotorReferenced Checks whether Z Motors are referenced

GetZMotorPosition Returns position of given Z Motor

7.2.1 Properties

7.2.1.1 Approach::ApproachMaxSteps

Returns or set the maximal length of an automatic tip approach.

Syntax

approach.ApproachMaxSteps [= steps]

Setting

Argument Type Description

steps long Defines the number of maximal steps allowed until an abort of the
automatic tip approach.

Remarks

The automatic tip approach aborts its search for the surface after a defined number of

85Object Reference

©2022 by Nanosurf, all rights reserved

unsuccessful retries.

In the current AFM scan head design a linear motor is used to move the scan stage.
Therefore the number of steps is a time slice during the motor is rotating than an actual
step of the motor.

Example

objAppr.ApproachMaxSteps = 20000

objAppr.StartApproach

See also

Method StartApproach, Property ApproachSpeed

7.2.1.4 Approach::ApproachPos

Returns or set the tip position at approach.

Syntax

approach.ApproachPos [= pos]

Setting

Argument Type Description

pos double Defines the tip position during AFM approach or reposition the tip
position

Remarks

The approach position of the tip is controlled by this property. It has two usages:

1. Defines the tip position during the approach process. This is usually 0um which
corresponds to mid range of the full z-scan range. Other values are used to
approach an measure small high features or narrow deep holes.

2. The stage can by readjusted after approach to re-center the mean tip position. This
is usually used if the sample has large drifts. If the ApproachPos property is set after
an approach and the z-controller has closed contact the stage is moved my the
approach motor until the z-controller's output reaches the new position defined by
the property. The movement speed is controlled by ApproachSpeed property. The
process can by stopped by the Stop Method.

These two concept are excluding and the user has to select a practical compromise. If
the surface is rough and the tip sharpness is not so critical a faster approach speed
can be chosen. If the surface has very small details and a sharp tip should be

86 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

preserved a slower approach speed should be set. Practical values are in the range of
5% to 30%.

Example

objAppr.ApproachPos = -1e-6 '[um]

objAppr.StartApproach

See also

ApproachSpeed Property, Stop Method

Version info

 Available since Software v1.5.0

7.2.1.5 Approach::ApproachSpeed

Returns or set the speed of automatic tip approach or withdraw.

Syntax

approach.ApproachSpeed [= speed]

Setting

Argument Type Description

speed double Defines the speed of automatic approach and withdraw in percent
of full speed motor movement

Remarks

The speed of the automatic tip approach should be selected with two ideas in mind:

To reach the surface as quick as possible a high moving speed would be interesting

To prevent the tip from damage at closing contact with the surface a smooth and
careful approach is desired

These two concept are excluding and the user has to select a practical compromise. If
the surface is rough and the tip sharpness is not so critical a faster approach speed
can be chosen. If the surface has very small details and a sharp tip should be
preserved a slower approach speed should be set. Practical values are in the range of
5% to 30%.

Example

objAppr.ApproachSpeed = 10.0 '[%]

objAppr.StartApproach

87Object Reference

©2022 by Nanosurf, all rights reserved

See also

Method StartApproach, StartWithdraw

7.2.1.6 Approach::AutoReloadSettings

Returns or set the flag to define if microscope parameter settings should be reload
before each approach.

Syntax

approach.AutoReloadSettings [= flag]

Setting

Argument Type Description

flag Boolean Set to True if the settings in the current parameter file should be
reloaded before each approach.

Remarks

The settings of the microscopes parameter can be automatically reloaded prior an
approach is executed. This is useful where each multiple images should be measured
exactly with the same settings. A repetitive equal sample measurement in a quality
control environment is an example where this flag could be used to ensure equal
measurement conditions.

The settings are loaded form the currently active parameter file shown in the status bar.

See also

Method StartApproach

7.2.1.7 Approach::AutoStartImaging

Returns or set the flag to define if imaging is started automatically after a successful
approach.

Syntax

approach.AutoStartImaging [= flag]

Setting

88 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument Type Description

flag Boolean Set to True if imaging should be started after an approach is
successful done. False if no action should be executed.

Remarks

To automatically start the imaging process after the approach this property can be set.
This is useful where the user should take over the instrument after the approach is
done. If no user interaction is desired the flag could be set to false in order to control the
microscope from the script only.

The start of the imaging is only triggered if a successful "approach done" could be
executed. See method Status.

See also

Method StartApproach, Property Status

7.2.1.8 Approach::ShowApproachDoneDialog

Returns or set the flag to define if the "Approach Done" Dialog should be displayed after
a successful approach.

Syntax

approach.ShowApproachDoneDialog [= flag]

Setting

Argument Type Description

flag Boolean Set to True if the Dialog should be displayed after an approach is
successful done. False if no dialog should be displayed.

Remarks

This property defines if a dialog should be displayed after a successful approach has
been executed. If approach is executed in a script environment this dialog is in many
cases unwanted an can be switched of by this property.
A script displayling the dialog should enable it at the end of the script again.

See also

Method StartApproach, Property Status

89Object Reference

©2022 by Nanosurf, all rights reserved

Version info

 Software v1.4.0 or later

7.2.1.9 Approach::WithdrawSteps

Returns or set the length of an automatic tip withdraw.

Syntax

approach.WithdrawSteps [= steps]

Setting

Argument Type Description

steps long Defines the number of steps counted during an automatic tip
withdraw.

Remarks

The automatic tip withdraw is used to perform a small tip release from the surface.
Normally this is done to move the surface underneath the tip and reapproach afterward.

In the current AFM scan head design a linear motor is used to move the scan stage.
Therefore the number of steps is a time slice during the motor is rotating than an actual
step of the motor.

Example

objAppr.WithdrawSteps = 1000

objAppr.StartWithdraw

See also

Method StartWithdraw, Property ApproachSpeed

7.2.2 Methods

7.2.2.1 Approach::IsMoving

Checks if any z approach motor movement is in process.

Syntax

flag = approach.IsMoving

Result

90 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result Type Description

flag Boolean Returns True if the z approach motor is moveing.

Remarks

The IsMoving property is monitoring the movement of the z approach motor. A script
should wait after any call of a Start... method until the movement is finished.

Example

 ' park scan stage

 objAppr.StartRetract

 Do While objAppr.IsMoving : Loop

See also

Method StartApproach, StartWithdraw, StartAdvance, StartRetract

7.2.2.2 Approach::ShowWindow

Defines the display style of the Positioning window.

Syntax

objAppr.ShowWindow(style)

Arguments

Argument Type Description

style short Visibility style number

Result

None.

Remarks

The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example

objAppr.ShowWindow(0) ' hide the window

91Object Reference

©2022 by Nanosurf, all rights reserved

See also

 None.

Version info

 Software v1.4.0 or later

7.2.2.3 Approach::StartAdvance

Starts advancing the tip to the surface.

Syntax

approach.StartAdvance

Remarks

This method is moving the tip toward the surface. This is a fast movement and is used
to shorten the automatic approach. After a preparation of a new sample usually the
sensor is far away from the surface and a slow automatic approach would be
timeconsuming. During the movement a read of IsMoving is True. To stop the
movement call Stop method.

Attention

Because no exact control of the movement is provided this method should be used
with great care! Any tip sample contact could damage the tip and measurement with
such a tip will be degraded or completely impossible. Use StartApproach instead.

See also

Method IsMoving, Stop, StartApproach

7.2.2.4 Approach::StartApproach

Starts the automatic tip approach to the surface.

Syntax

approach.StartApproach

Remarks

This method is starting the automatically approach process. Approaching the surface is
a first step process before the microscope is ready to perform other surface analysis
method as imaging or spectroscopy. During the approach process the tip is moved to

92 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

the sample surface and the sensor's signal is monitored. The approach is stopped
when the sensor signal has reached the setpoint value defined by the z feedback
controller.

Operating Mode settings and Z Feedback controller settings should be set to
reasonable values prior an approach. Depending on the operating mode special sensor
calibration sequences could be executed prior the actual approach movement starts.

The script can wait for the end of the approach by reading the IsMoving method. After
IsMoving returns False the reason why the approach stopped should be read with the
method Status. If an error condition was the reason an appropriate action should be
taken by the script (e.g. Display a message box and withdrawing from the surface). To
abort the approach call method Stop.

Example

' prepare approach

objAppr.ApproachSpeed = 10.0

objAppr.AutoStartImaging = False

' approach

objAppr.StartApproach

Do While objAppr.IsMoving : Loop

' if successful do something

If objAppr.Status = 3 Then

 ' approach done -> do something (start imaging or)

Else ' approach error

 MsgBox "Approach error = " & objAppr.Status

End If

 ' finish

 objAppr.StartWithdraw

 Do While objAppr.IsMoving : Loop

See also

Property ApproachSpeed, ApproachMaxSteps, AutoStartImaging,
Method IsMoving, Status, Stop
Class OperatingMode, ZController

7.2.2.5 Approach::StartRetract

Starts retracting the tip from surface.

Syntax

approach.StartRetract

93Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

This method is moving the tip away from the surface. This is a fast movement and is
used to park the sensor in a far away position from the surface in order to exchange
sample or prior shut down of the microscope power. During the movement a read of
IsMoving is True. To stop the movement call Stop method. Prior the movement any
scanning is stopped and the tip is retracted from the surface.

Because no exact control of the movement is provided this method should be used
only in combination with a user interface or a delay timer to define the duration and the
length of the movement.

A special case is parking the AFM scan stage in the most retracted upper position. You
can call StartRetract and wait until IsMoving is False. Then the scan stage is moved
into the upper end switch.

Example

 ' finish

 objAppr.StartRetract

 Sleep(500)

 objAppr.Stop

See also

Method IsMoving, Stop

7.2.2.7 Approach::StartWithdraw

Starts withdrawing the tip from the surface.

Syntax

approach.StartWithdraw

Remarks

This method is moving the tip away from the surface by a controlled amount. The
withdraw length is set by WithdrawSteps property.
Prior the movement any scanning is stopped and the tip is retracted from the surface.

The script can wait for the end of the withdraw by reading the IsMoving method. To
abort the withdraw call method Stop.
The speed of the withdraw is the same as the approach speed an is set by property
ApproachSpeed.

Example

94 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

 ' finish

 objAppr.StartWithdraw

 Do While objAppr.IsMoving : Loop

See also

Property ApproachSpeed
Method IsMoving, Stop

7.2.2.9 Approach::Status

Returns the current status of the z approach motor and the approach process.

Syntax

status = approach.Status

Result

Result Type Description

status long A number naming the state of the z approach stage. See table
below.

Remarks

Read this Method to get more information about the state of z approach motor stage.
You can call this method during a movement or after the end. It gives you information if
a movement was successful or not and why.

Table of approach state number and description:

State
No.

Name Description

0 ApprStat_Standby No movement

1 ApprStat_Initializing Preparing of automatic approach in process

2 ApprStat_Approaching Automatic approach in process

3 ApprStat_ApproachDone Automatic approach successful finished

4 ApprStat_ApproachAborted Approach automatically aborted

5 ApprStat_MoveToParkPositio
n

Moving to park position in process

6 ApprStat_ParkPositionReach
ed

Park position reached

7 ApprStat_MoveAway Retracting tip from sample in process

95Object Reference

©2022 by Nanosurf, all rights reserved

8 ApprStat_MoveToward Advancing tip toward tip in process

9 ApprStat_SensorFailed AFM sensor error

10 ApprStat_LimitFailed AFM approach stage failure

11 ApprStat_CalibrationFailed Initialisation or calibration process failed

12 ApprStat_UserAbort Movement was stopped by Stop method

13 ApprStat_MaxOut End of movement reached

14 ApprStat_InitDone Sensor initialisation finished

15 ApprStat_AdjustingTipPos readjusting tip position while in contact

Example

' approach

objAppr.StartApproach

Do While objAppr.IsMoving : Loop

' check state

If objAppr.Status <> 3 Then

 MsgBox "Approach error = " & objAppr.Status

End If

See also

Method StartApproach, StartWithdraw, StartAdvance, StartRetract

7.2.2.10 Approach::Stop

Stops any movement of the z approach motor.

Syntax

approach.Stop

Remarks

This method stops any on going movement z approach motor movement

Example

 ' approach with timeout

 objAppr.StartApproach

 sleep(10000)

 If objAppr.IsMoving Then

 objAppr.Stop

 MsgBox "No surface found"

96 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

 End If

See also

Method IsMoving, StartApproach, StartWithdraw, StartAdvance, StartRetract

7.3 BatchManager

The Stage class handles the batch manager subsystem.

A object pointer to this class is provided by the Application.BatchManager object property.

Table of properties for the BatchManager class:

Property name Purpose

CurrentPointIndex Current point index

HasConfigurationFilename Says if the configuration as a file name associated with it

IsIdle Says if the batch manager is idle

IsPaused Says if the batch manager is paused

IsStopFlag Says if the batch manager has the stop flag set

IsUnconfigured Says if the batch manager is unconfigured

IsWorking Says if the batch manager is working

Table of methods for the BatchManager class:

Method name Purpose

AppendNewPointRecord Appends a new point record to the list

AppendNewPointRecordFromCurrentPosi
tion

Appends a new point record with the current coordinates

CreateNewConfiguration Creates a new batch manager configuration

GetChangeSamplePosition Returns the change sample position

GetConfigurationDescription Returns the configuration description text

GetPointRecordArgument Returns a point record argument

GetPointRecordPoint Returns a point record position

GetReferencePosition Returns the reference position

GetScript Returns the script text

LoadConfigurationFile Loads a configuration file

MoveToChangeSamplePosition Moves the stage to the change sample position

97Object Reference

©2022 by Nanosurf, all rights reserved

Pause Pauses the batch manager processor

RemovePointRecord Removes a specific point record from the list

SaveConfigurationFile Saves the configuration

SaveConfigurationFileEx Saves the configuration to given configuration file

SetChangeSamplePosition Sets the change sample position

SetConfigurationDescription Sets the configuration description text

SetPointRecordArgument Sets a point record argument

SetPointRecordPoint Sets a point record position

SetReferencePosition Sets the reference position

SetScript Sets the script text

Start Stars the batch manager processor from given list item

Stop Stops the batch manager processor

7.3.1 Properties

7.3.1.1 BatchManager::CurrentPointIndex

Returns the current point index of the batch manager process. This property is read
only.

Syntax

objBatchManager.CurrentPointIndex [= index] [read only]

Setting

Argument Type Description

index Boolean Current point index of batch manager process

Remarks

This returns the current point index of the batch manager process.The index starts with
0 and ends at "point count" - 1.

See also

-

Version info

98 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

 Software v3.5.0.0 or later

7.3.1.2 BatchManager::HasConfigurationFilename

Returns a flag which says if the batch manager has a configuration file name set or not.
This property is read only.

Syntax

objBatchManager.HasConfigurationFilename [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if a configuration file name is set

Remarks

This flag says if the batch manager has a configuration file name set or not. This is
necessary to save the configuration and is implicitly set when LoadConfigurationFile
was used.

See also

Method CreateNewConfiguration, LoadConfigurationFile, SaveConfigurationFile,
SaveConfigurationFileEx

Version info

 Software v3.5.0.0 or later

7.3.1.3 BatchManager::IsIdle

Returns a flag which says if the batch manager is idle or not. This property is read only.

Syntax

objBatchManager.IsIdle [= flag] [read only]

Setting

Argument Type Description

99Object Reference

©2022 by Nanosurf, all rights reserved

flag Boolean True if idle

Remarks

This flag says if the batch manager is idle.

See also

Property IsWorking, IsPaused, IsStopFlag

Version info

 Software v3.5.0.0 or later

7.3.1.4 BatchManager::IsPaused

Returns a flag which says if the batch manager is paused or not. This property is read
only.

Syntax

objBatchManager.IsPaused [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if is paused

Remarks

This flag says if the batch manager is paused.

See also

Property IsIdle, IsWorking, IsStopFlag

Version info

 Software v3.5.0.0 or later

100 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.3.1.5 BatchManager::IsStopFlag

Returns a flag which says if the batch manager stop flag is set or not. This property is
read only.

Syntax

objBatchManager.IsStopFlag [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if StopFlag is set

Remarks

This flag says if the batch manager has the stop flag set. Because a batch manager
operation may need a lot of time to
shutdown, a stop flag signals that a stop is in progress.

See also

Property IsIdle, IsWorking, IsPaused, Method Stop

Version info

 Software v3.5.0.0 or later

7.3.1.6 BatchManager::IsUnconfigured

Returns a flag which says if the batch manager is configured or not. This property is
read only.

Syntax

objBatchManager.IsUnconfigured [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if not configured

101Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

This flag says if the batch manager is configured or not. Most functions can't be used
before the batch manager is configured.

See also

Method CreateNewConfiguration, LoadConfigurationFile

Version info

 Software v3.5.0.0 or later

7.3.1.7 BatchManager::IsWorking

Returns a flag which says if the batch manager is working or not. This property is read
only.

Syntax

objBatchManager.IsWorking [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if is working

Remarks

This flag says if the batch manager is working.

See also

Property IsIdle, IsPaused, IsStopFlag

Version info

 Software v3.5.0.0 or later

102 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.3.2 Methods

7.3.2.1 BatchManager::AppendNewPointRecord

This method appends a new point record and returns the point list index of it.

Syntax

retval = objBatchManager.AppendNewPointRecord()

Argument

None

Result

Result Type Description

retval int32 Point list item index

Remarks

The AppendNewPointRecord method appends a new point record and returns the
point list item index of it

See also

Method RemovePointRecord, AppendNewPointRecordFromCurrentPosition

Version info

 Software v3.5.0.0 or later

7.3.2.2 BatchManager::AppendNewPointRecordFromCurrentPosition

This method appends a new point record with the current stage coordinates and returns
the point list index of it.

Syntax

retval = objBatchManager.AppendNewPointRecordFromCurrentPosition()

Argument

None

Result

103Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

retval int32 Point list item index

Remarks

The AppendNewPointRecord method appends a new point record with the current
stage coordinates and returns the point list item index of it

See also

Method RemovePointRecord, AppendNewPointRecord

Version info

 Software v3.5.0.28 or later

7.3.2.3 BatchManager::CreateNewConfiguration

This method creates a new batch manager configuration.

Syntax

objBatchManager.CreateNewConfiguration()

Argument

None

Result

None

Remarks

The CreateNewConfiguration method creates a new batch manager configuration
without file name. If an open configuration has unsaved changes, those are lost. The
new configuration is used by the batch manager process immediately and is idle.

See also

Method LoadConfigurationFile, SaveConfigurationFile, SaveConfigurationFileEx,
Property HasConfigurationFilename

Version info

 Software v3.5.0.0 or later

104 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.3.2.4 BatchManager::GetChangeSamplePosition

This method returns the change sample position for given axis.

Syntax

retval = objBatchManager.GetChangeSamplePosition(nVirtualAxisId)

Argument

Paramete
r

Type Description

nVirtualAxi
sId

int32 Virtual axis id

Result

Result Type Description

retval double Change sample position

Remarks

The GetChangeSamplePosition method returns the change sample position of an
axis. The change sample position is a special position that can be moved to, to change
the sample.

See also

Method SetChangeSamplePosition, MoveToChangeSamplePosition

Version info

 Software v3.5.0.0 or later

7.3.2.5 BatchManager::GetConfigurationDescription

This method returns the configuration file description.

Syntax

retval = objBatchManager.GetConfigurationDescription()

Argument

None

Result

105Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

retval String Configuration file description

Remarks

The GetConfigurationDescription method returns the configuration file description.
This is an unprocessed string which can help identify a configuration or write
something about it.

See also

Method SetConfigurationDescription

Version info

 Software v3.5.0.0 or later

7.3.2.6 BatchManager::GetPointRecordArgument

This method returns the point argument for given point list item and argument name.

Syntax

retval = objBatchManager.GetPointRecrodArgument(nPointListIndex, nVirtualAxisId)

Argument

Parameter Type Description

nPointListInde
x

int32 Point list index

strArgumentN
ame

String Argument name

Result

Result Type Description

retval String Point argument value

Remarks

The GetPointRecrodArgument method returns the point argument value of an point
list item and argument name.

See also

106 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method SetPointRecordArgument

Version info

 Software v3.5.0.0 or later

7.3.2.7 BatchManager::GetPointRecordPoint

This method returns the point position for given axis and point list item.

Syntax

retval = objBatchManager.GetPointRecrodPoint(nPointListIndex, nVirtualAxisId)

Argument

Parameter Type Description

nPointListIn
dex

int32 Point list index

nVirtualAxisI
d

int32 Virtual axis id

Result

Result Type Description

retval double Point position

Remarks

The GetPointRecrodPoint method returns the point position of an axis and point list
item.

See also

Method SetPointRecordPoint

Version info

 Software v3.5.0.0 or later

7.3.2.8 BatchManager::GetReferencePosition

This method returns the reference position for given axis.

Syntax

107Object Reference

©2022 by Nanosurf, all rights reserved

retval = objBatchManager.GetReferencePosition(nVirtualAxisId)

Argument

Paramete
r

Type Description

nVirtualAxi
sId

int32 Virtual axis id

Result

Result Type Description

retval double Reference position

Remarks

The GetReferencePosition method returns the reference position of an axis. The
reference position is added to any point position in the batch manager process.

See also

Method SetReferencePosition

Version info

 Software v3.5.0.0 or later

7.3.2.9 BatchManager::GetScript

This method returns the batch manager script.

Syntax

retval = objBatchManager.GetScript()

Argument

None

Result

Result Type Description

retval String Batch manager script

Remarks

108 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The GetScript method returns the batch manager script. This is the operational heart
of the batch manager. While the batch manager is changing the position from point to
point, the script is run to perform tasks on the points.

See also

Method SetScript

Version info

 Software v3.5.0.0 or later

7.3.2.10 BatchManager::LoadConfigurationFile

This method loads a batch manager configuration from file.

Syntax

objBatchManager.LoadConfigurationFile(strFilename)

Argument

Paramete
r

Type Description

strFilenam
e

String Batch manager configuration file name

Result

None

Remarks

The LoadConfigurationFile method loads a batch manager configuration from file.
The configuration is used by the batch manager process immediately and is idle.

See also

Method CreateNewConfiguration, SaveConfigurationFile, SaveConfigurationFileEx,
Property HasConfigurationFilename

Version info

 Software v3.5.0.0 or later

109Object Reference

©2022 by Nanosurf, all rights reserved

7.3.2.11 BatchManager::MoveToChangeSamplePosition

This method moves the stage to the change sample position.

Syntax

objBatchManager.MoveToChangeSamplePosition()

Argument

None

Result

None

Remarks

The MoveToChangeSamplePosition method moves the stage to the change sample
position.

See also

Method SetChangeSamplePosition, GetChangeSamplePosition

Version info

 Software v3.5.0.0 or later

7.3.2.12 BatchManager::Pause

This method pauses the batch manager process.

Syntax

objBatchManager.Pause()

Argument

None

Result

None

Remarks

The Pause method pauses the batch manager process. The pause will occur just
before the next point would be processed.

110 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Method Start, Stop

Version info

 Software v3.5.0.0 or later

7.3.2.13 BatchManager::RemovePointRecord

This method removes the point record with given point list index.

Syntax

objBatchManager.RemovePointRecord(nPointListIndex)

Argument

Parameter Type Description

nPointListInde
x

int32 Point list index

Result

None

Remarks

The RemovePointRecord method sets the point argument value of given point list
item and argument name.

See also

Method AppendNewPointRecord

Version info

 Software v3.5.0.0 or later

7.3.2.14 BatchManager::SaveConfigurationFile

This method saves a batch manager configuration to file.

Syntax

objBatchManager.SaveConfigurationFile()

111Object Reference

©2022 by Nanosurf, all rights reserved

Argument

None

Result

None

Remarks

The SaveConfigurationFile method saves the batch manager configuration to file.
HasConfigurationFilename must return True for this method to work. Else
SaveConfigurationFileEx must be used.

See also

Method CreateNewConfiguration, LoadConfigurationFile, SaveConfigurationFileEx,
Property HasConfigurationFilename

Version info

 Software v3.5.0.0 or later

7.3.2.15 BatchManager::SaveConfigurationFileEx

This method saves a batch manager configuration to file.

Syntax

objBatchManager.SaveConfigurationFileEx(strFilename)

Argument

Paramete
r

Type Description

strFilenam
e

String Batch manager configuration file name

Result

None

Remarks

The SaveConfigurationFileEx method saves the batch manager configuration to file.
The configuration file name is changed permanently to the saved destination which
allows SaveConfigurationFile to be used next time.

112 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Method CreateNewConfiguration, LoadConfigurationFile, SaveConfigurationFile,
Property HasConfigurationFilename

Version info

 Software v3.5.0.0 or later

7.3.2.16 BatchManager::SetChangeSamplePosition

This method sets the change sample position for given axis.

Syntax

objBatchManager.SetChangeSamplePosition(nVirtualAxisId, val)

Argument

Paramete
r

Type Description

nVirtualAxi
sId

int32 Virtual axis id

val double Axis value

Result

None

Remarks

The SetChangeSamplePosition method sets the change sample position of given
axis. The change sample position is a special position that can be moved to, to change
the sample.

See also

Method GetChangeSamplePosition, MoveToChangeSamplePosition

Version info

 Software v3.5.0.0 or later

113Object Reference

©2022 by Nanosurf, all rights reserved

7.3.2.17 BatchManager::SetConfigurationDescription

This method sets the configuration file description.

Syntax

objBatchManager.SetConfigurationDescription(strDescription)

Argument

Paramete
r

Type Description

strDescript
ion

String Batch manager configuration file description

Result

None

Remarks

The SetConfigurationDescription method sets the configuration file description. This
is an unprocessed string which can help identify a configuration or write something
about it.

See also

Method GetConfigurationDescription

Version info

 Software v3.5.0.0 or later

7.3.2.18 BatchManager::SetPointRecordArgument

This method sets the change sample position for given axis and point list item.

Syntax

objBatchManager.SetPointRecordArgument(nPointListIndex, strArgumentName,
val)

Argument

Parameter Type Description

nPointListInde
x

int32 Point list index

114 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

strArgumentN
ame

String Argument name

val String Argument value

Result

None

Remarks

The SetPointRecordArgument method sets the point argument value of given point
list item and argument name.

See also

Method GetPointRecordArgument

Version info

 Software v3.5.0.0 or later

7.3.2.19 BatchManager::SetPointRecordPoint

This method sets the change sample position for given axis and point list item.

Syntax

objBatchManager.SetPointRecordPoint(nPointListIndex, nVirtualAxisId, val)

Argument

Parameter Type Description

nPointListIn
dex

int32 Point list index

nVirtualAxis
Id

int32 Virtual axis id

val double Axis value

Result

None

Remarks

The SetPointRecordPoint method sets the point position of given axis and point list
item.

115Object Reference

©2022 by Nanosurf, all rights reserved

See also

Method GetPointRecordPoint

Version info

 Software v3.5.0.0 or later

7.3.2.20 BatchManager::SetReferencePosition

This method sets the reference position for given axis.

Syntax

objBatchManager.SetReferencePosition(nVirtualAxisId, val)

Argument

Paramete
r

Type Description

nVirtualAxi
sId

int32 Virtual axis id

val double Axis value

Result

None

Remarks

The SetReferencePosition method sets the reference position of given axis. The
reference position is added to any point position in the batch manager process.

See also

Method GetReferencePosition

Version info

 Software v3.5.0.0 or later

7.3.2.21 BatchManager::SetScript

This method sets the batch manager script description.

Syntax

116 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objBatchManager.SetScript(strScript)

Argument

Paramete
r

Type Description

strScript String Batch manager script

Result

None

Remarks

The SetScript method sets the batch manager script. This is the operational heart of
the batch manager. While the batch manager is changing the position from point to
point, the script is run to perform tasks on the points.

See also

Method GetScript

Version info

 Software v3.5.0.0 or later

7.3.2.22 BatchManager::Start

This method starts the batch manager process at given location.

Syntax

objBatchManager.Start(nPointListIndex)

Argument

Parameter Type Description

nPointListInde
x

int32 Point list index

Result

None

Remarks

117Object Reference

©2022 by Nanosurf, all rights reserved

The Start method starts the batch manager process at given location. The batch
manager must be idle. To start from the beginning, the location 0 must be set.

See also

Method Stop, Pause

Version info

 Software v3.5.0.0 or later

7.3.2.23 BatchManager::Stop

This method stops the batch manager process.

Syntax

objBatchManager.Stop()

Argument

None

Result

None

Remarks

The Stop method stops the batch manager process. If a script method is running, the
stop will occur after this method is finished.

See also

Method Start, Pause

Version info

 Software v3.5.0.0 or later

7.4 Chart

The Chart class represents a graphical display of data in a documents window. The data,
a chart is displaying, is stored in a associated data container in the document. The
properties Group and Signal are specifying this data container.

A chart can display the contents in many styles. They are defined by a set of Properties.
These properties are similar to the buttons found in the Application's Chart Toolbar.

118 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Multiple charts are stored in a list by the document and are referenced by a position.

Table of properties of class Chart:

Property name Purpose

Pos Display position of the chart in the document window

Group Group index of the displayed data container

Signal Signal number of the displayed data container

Type Type of chart

Filter Mathematical line by line filter applied to the display data

Active Activation flag of the chart

AxisShow Show or hides the axis

RangeAutoSet Enable the automatically data range algorithm

RangeCenter Set the centre value of the display data range

RangeSpan Set the span value of the display data range

ViewSize Defines the size of the chart in the window

Table of methods of class Chart:

Method name Purpose

GetDocument Retrieves the IDispatch object to the charts parent document

OptimiseRange Calls the range optimization algorithm and updates RangeCenter and
RangeSpan

CopyToClipboard Copy the current chart as a bitmap to the clipboard

7.4.1 Properties

7.4.1.1 Chart::Active

Returns or sets the chart's activation flag

Syntax

objChart.Active [= flag]

Setting

119Object Reference

©2022 by Nanosurf, all rights reserved

Argument Type Description

flag Boolean Active defines the selection state of the chart.

Remarks

The Active property reflects the selection state of the chart. Only one chart can be
active at a single time. If the activation property is set to True and another chart was
active this old chart will loos its selection state. Also the user can change the activation
by clicking with the left mouse button anywhere in the chart's window area.

Example

 If objChart.Active Then

 ' do something

 End If

See also

None.

7.4.1.2 Chart::AxisShow

Returns or sets the chart's axis visibility flag

Syntax

objChart.AxisShow [= flag]

Setting

Argument Type Description

flag Boolean AxisShow defines if the axis of the graph is drawn or not.

Remarks

The AxisShow property defines if the chart is drawing axis label information or not. Set
this property to True if axis labels should be displayed.

Example

' draw axis labels

objChart.AxisShow = True

See also

None.

120 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.4.1.3 Chart::Filter

Returns or sets the chart's mathematical filter

Syntax

objChart.Filter [= filter]

Setting

Argument Type Description

filter short filter defines the mathematical algorithm. It has to be one of the
values defined in the table below

Remarks

The Filter property defines the mathematical algorithm applyed to each data line prior it
is drawn to the chart.

Table of implemented Filter:

Type number Description

0 RAW Data. (No operation)

1 Mean fit.

2 Line fit

3 Derived Data

4 Parabola fit

5 Polynomial fit

Detailed description of the algorithm are described in the Software Reference Manual.

Example

 objChart.Filter = 2 ' activate line fit algo.

See also

Software Reference Manual.

121Object Reference

©2022 by Nanosurf, all rights reserved

7.4.1.4 Chart::Group

Returns or sets the group index of the chart's associated data container.

Syntax

objChart.Group [= group]

Setting

Argument Type Description

group short group defines the index of the data container displayed by the chart

Remarks

The Group property is storing the group index of the data container display by the
chart. To identify a data container the Property Signal has to be set correctly too.

It is legal to set Group and Signal to values which has no associated data container in
the document. An empty chart will be display in this case. Negative values are not
allowed and are reset to zero.

Example

 ' activate a specific data container (Scan Forward, Topography)

 objChart.Group = 0

 objChart.Signal = 1

See also

Signal Property

7.4.1.5 Chart::Pos

Returns or sets the position of the chart the document window.

Syntax

objChart.Pos [= pos]

Setting

Argument Type Description

pos short pos defines the position of the chart in the list of a document

Remarks

122 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Chart class instances are stored in the parent document in a list. The Pos property is
containing the list position of a chart. Charts are displayed in the Document window in
their list position starting by position zero.

The position of a chart is defining its place on screen. The charts are arranged to fit
best the document's window size. The chart with position zero is display first in the top
left corner of the document window, subsequent charts are placed below the last chart
until the size of the window is reached. Then the new chart is placed one row to the
right at the top of the window.

If the value -1 is assigned to the Pos property the chart class is placed at the end of the
list and the Pos property value is set accordingly.

Example

' move a chart to the end

objChart.Pos = -1

See also

Doc.ChartCreate Method

7.4.1.6 Chart::RangeAutoSet

Returns or sets the chart's flag for automatically range selection

Syntax

objChart.RangeAutoSet [= flag]

Setting

Argument Type Description

flag Boolean RangeAutoSet defines if the chart's data range is automatically
optimized or not.

Remarks

The RangeAutoSet defines if the chart's data range is automatically optimized or not.
Set this property to True if optimisation is desired.

The optimisation algorithm uses histogram analysis to detect the optimal display range
for the data. Display range in a document is only optimized at change of properties like
Group, Signal and Filter.

123Object Reference

©2022 by Nanosurf, all rights reserved

To optimize the display range for data calculated by a script call OptimiseRange
Method after the calculation is done.

Example

' enable optimisation

objChart.RangeAutoSet = True

See also

None.

7.4.1.7 Chart::RangeCenter

Returns or sets the chart's center of the display data

Syntax

objChart.RangeCenter [= center]

Setting

Argument Type Description

center double Defines the center value of the displayed data range..

Remarks

The RangeSpan is used together with RangeCenter and defines values which are
displayed. The values have to be inside this range to be display.

Minimal data value = RangeCenter - RangeSpan/2

Maximal data value = RangeCenter + RangeSpan/2

The chart implements a algorithm to optimize RangeCenter and RangeSpan. See
OptimiseRange Method.

Example

' change the brightness of a chart

objChart.RangeCenter = objChart.RangeCenter * 1.1

See also

RangeSpan Property.

124 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.4.1.8 Chart::RangeSpan

Returns or sets the chart's span of the display data

Syntax

objChart.RangeSpan [= span]

Setting

Argument Type Description

span double Defines the span of the displayed data range..

Remarks

The RangeSpan is used together with RangeCenter and defines values which are
displayed. The values have to be inside this range to be display.

Minimal data value = RangeCenter - RangeSpan/2

Maximal data value = RangeCenter + RangeSpan/2

The chart implements a algorithm to optimize RangeCenter and RangeSpan. See
OptimiseRange Method.

Example

' change the contrast of a chart

objChart.RangeSpan = objChart.RangeSpan*2

See also

RangeCenter Property.

7.4.1.9 Chart::Signal

Returns or sets the signal number of the chart's associated data container.

Syntax

objChart.Signal [= signal]

Setting

Argument Type Description

signal short signal defines the channel number of the data container displayed

125Object Reference

©2022 by Nanosurf, all rights reserved

by the chart

Remarks

The Signal property is storing the channel number of the data container display by the
chart. To identify a data container the property Group has to be set correctly too.

It is legal to set Group and Signal to values which has no associated data container in
the document. An empty chart will be display in this case. Negative values are not
allowed and are reset to zero.

Example

 ' activate a specific data container (Scan Forward, Topography)

 objChart.Group = 0

 objChart.Signal = 1

See also

Group Property

7.4.1.10 Chart::Type

Returns or sets the chart's display style for the data values.

Syntax

objChart.Type [= type]

Setting

Argument Type Description

type short type defines the display style. It has to be one of the values defined
in the table below

Remarks

The Type property defines the style of the graph used to display the data values of the
data container.

Table of Type styles:

Type number Description

0 Line graph style

1 Colour map style

126 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

2 3D view style

3 Shaded colour map style

4 Dual line graph style

5 XY line graph style

Example

 objChart.Type = 3 ' activate shaded colour map

See also

none.

7.4.1.11 Chart::ViewSize

Returns or sets the chart's size on screen

Syntax

objChart.ViewSize [= size]

Setting

Argument Type Description

size short Defines the size of the chart on screen in pixel.

Remarks

The ViewSize defines the size of the charts output in pixel. Not the outer chart frame
size is defined but the actual plot area of the data. This helps preventing aliasing or
moire effects on the display if the output size has a even size compared to the number
of data measured in a data container.

Example

' change the size of a chart

objChart.ViewSize = 256

See also

Class Data.

127Object Reference

©2022 by Nanosurf, all rights reserved

7.4.2 Methods

7.4.2.1 Chart::CopyToClipboard

Copy the current chart as a bitmap to the clipboard.

Syntax

objChart.CopyToClipboard()

Arguments

none

Result

Result Type Description

ok Boolean Returns True if successful

Remarks

none

Example

objChart.CopyToClipboard

See also

7.4.2.2 Chart::GetDocument

Returns a IDispatch object to the parent Document class.

Syntax

objDoc = objChart.GetDocument()

Arguments

 none.

Result

128 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result Type Description

objDoc Object A IDispatch object to the parent document class

Remarks

The GetDocument() method returns a IDispatch object to the Document class where
this class is stored.

Example

Set objDoc = objChart.GetDocument()

if objApp.IsObj(objDoc) then

 MsgBox "The chart's parent is : " & objDoc.Name

end if

See also

Class Document

7.4.2.3 Chart::OptimiseRange

Recalculate the display range values RangeCenter and RangeSpan.

Syntax

objChart.OptimiseRange()

Arguments

none

Result

Result Type Description

ok Boolean Returns True if successful

Remarks

The OptimiseRange method calculates new RangeSpan and RangeCenter property
values in order to optimize the visibility of the data.

It's using depending on the charts display type and filter different algorithm.

Colour map types is using a calculation an histogram of the data and find the best
value range out of this analysis.

129Object Reference

©2022 by Nanosurf, all rights reserved

The line graph types is using a histogram analysis too but with different thresholds.

It's useful to call this method after a script has calculated new data and filled them into
a data container.

Example

objChart.OptimiseRange ' maximize and activate this document

See also

 RangeAutoSet Property, RangeCenter Property, RangeSpan Property.

7.5 Data

The Data class represents a storage container for measured data values. The data values
are named as points. Multiple points are organized in a line. Multiple such Data lines are
stored in the container. Another way on looking at the stored data is that of a 2D-Matrix
with a with of Points and a height of Lines.

Data are stored as 16 bit values in the matrix but the Data class knows the physical data
values and is able to convert between the internal 16Bit Raw data and the physical values.
Therefore the class saves for each axis a name, a unit, a minimum and a range value.
See

The contents of each line can by flagged with attributes about its validity. This is useful for
algorithms or chart display classes to know which contents is meaningful or new. See
method SetLineFlag or property BufferEmpty.

Table of properties of class Data:

Property name Purpose

Points Number of data values per line

Lines Number of data lines per container

CurrentLine Active line

BufferEmpty Flags if container has real data stored or is just initialized

AxisPointName Name string of the point axis

AxisPointUnit Physical unit of the point axis

AxisPointMin Physical value of first point in line

AxisPointRange Physical value range of from first to last point in line

130 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

AxisLineName Name string of the line axis

AxisLineUnit Physical unit of the line axis

AxisLineMin Physical value of first line in container

AxisLineRange Physical value range of from first to last line in container

AxisSignalName Name string of the signal axis

AxisSignalUnit Physical unit of the signal axis

AxisSignalMin Physical value of most negative data value

AxisSignalRange Physical value range of over the full 16Bit range

LineDataPoints Number of data values of a specified line

LineDataMin Physical value of first point in a specified line

LineDataRange Physical value range of from first to last point in a specified line

Table of methods of class Data:

Method name Purpose

SetLine / SetLine2 Write an string array of points in the container in different data format.

Value passed as String or Variant Array

GetLine / GetLine2 Retrieve an string array of points from the container in different data format.

Value passed as String or Variant Array

SetPixel / SetPixel2 Write a data point in different data format.

Value passed as String / Variant

GetPixel / GetPixel2 Read a data point in different data format.

Value passed as String / Variant

SetLineRAW /
SetLineRAW2

Save an array of points in the container as 16/32Bit values.

Value passed as String / Variant Array

GetLineRAW /
SetLineRAW2

Retrieve an array of points from the container as 16/32Bit values.

Value passed as String / Variant Array

SetPixelRAW /
SetPixelRAW2

Write a 16/32Bit data point. Value passed as String / Variant

GetPixelRAW /
GetPixelRAW2

Read a 16/32Bit data point. Value passed as String / Variant

SetLineFlags Modify the state flag of a stored line

GetLineFlags Read the state flag

GetDocument Retrieves the IDispatch object to the charts parent document

131Object Reference

©2022 by Nanosurf, all rights reserved

GetGroupID Retrieves the ID associated with this container

GetGroup Retrieves the group index associated with this container

GetSignal Retrieves the signal number associated with this container

RemoveLine Remove a specified data line

SwapLines Swap the content of two lines

7.5.1 Properties

7.5.1.1 Data::AxisLineMin

Returns or sets the physical minimal value used by the line axis.

Syntax

objData.AxisLineMin [= minium]

Setting

Argument Type Description

minimum double Physical mininimal value

Remarks

The AxisLineMin physical value corresponds to the line with index zero (bottom one).

Example

' set the physical range of the line axis

objData.AxisLineUnit = "m" 'meter

objData.AxisLineMin = 0.0

objData.AxisLineRange = 1e-6

See also

AxisLineUnit Property, AxisLineRange Property

7.5.1.2 Data::AxisLineName

Returns or sets the name of the line axis.

Syntax

objData.AxisLineName [= name]

132 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

name string Name of the axis

Remarks

Each axis has its own name. This name is display along the graph in the chart display.

Example

' set the name of the axis

objData.AxisPointName = "X-Axis"

objData.AxisLineName = "Y-Axis"

objData.AxisSignalName = "Topography"

See also

AxisLineUnit Property, AxisLineMin Property, AxisLineRange Property

7.5.1.3 Data::AxisLineRange

Returns or sets the physical range value used by the line axis.

Syntax

objData.AxisLineRange [= range]

Setting

Argument Type Description

range double Physical range of the axis

Remarks

The AxisLineRange value defines the physical value range span over all data lines in
the container.
The maximal physical value of the top line Lines-1 is AxisLineMin+AxisLineRange.

Example

' set the physical range of the line axis

objData.AxisLineUnit = "m" 'meter

objData.AxisLineMin = 0.0

objData.AxisLineRange = 1e-6

133Object Reference

©2022 by Nanosurf, all rights reserved

See also

AxisLineUnit Property, AxisLineMin Property

7.5.1.4 Data::AxisLineUnit

Returns or sets the physical unit used by the line axis.

Syntax

objData.AxisLineUnit [= unit]

Setting

Argument Type Description

unit string Physical unit name of the axis

Remarks

The values of an axis can be display by physical units. The unit has to be defined is in
its base without exponential extension like 'n' for nano. The chart is responsible to
display the values in an appropriate way.

Example

' set the physical range of the line axis

objData.AxisLineUnit = "m" 'meter

objData.AxisLineMin = 0.0

objData.AxisLineRange = 1e-6

See also

AxisLineMin Property, AxisLineRange Property

7.5.1.5 Data::AxisPointMin

Returns or sets the physical minimal value used by the point axis.

Syntax

objData.AxisPointMin [= minium]

Setting

134 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument Type Description

minimum double Physical mininimal value

Remarks

The AxisPointMin physical value corresponds to the point with index zero (most left
one).

Example

' set the physical range of the point axis

objData.AxisPointUnit = "m" 'meter

objData.AxisPointMin = 0.0

objData.AxisPointRange = 1e-6

See also

AxisPointUnit Property, AxisPointRange Property

7.5.1.6 Data::AxisPointName

Returns or sets the name of the point axis.

Syntax

objData.AxisPointName [= name]

Setting

Argument Type Description

name string Name of the axis

Remarks

Each axis has its own name. This name is display along the graph in the chart display.

Example

' set the name of the axis

objData.AxisPointName = "X-Axis"

objData.AxisLineName = "Y-Axis"

objData.AxisSignalName = "Topography"

See also

AxisPointUnit Property, AxisPointMin Property, AxisPointRange Property

135Object Reference

©2022 by Nanosurf, all rights reserved

7.5.1.7 Data::AxisPointRange

Returns or sets the physical range value used by the point axis.

Syntax

objData.AxisPointRange [= range]

Setting

Argument Type Description

range double Physical range of the axis

Remarks

The AxisPointRange value defines the physical value range span over all data point in
a line.
The maximal physical value of the last point Points-1 is AxisPointMin
+AxisPointRange.

Example

' set the physical range of the point axis

objData.AxisPointUnit = "m" 'meter

objData.AxisPointMin = 0.0

objData.AxisPointRange = 1e-6

See also

AxisPointUnit Property, AxisPointMin Property

7.5.1.8 Data::AxisPointUnit

Returns or sets the physical unit used by the point axis.

Syntax

objData.AxisPointUnit [= unit]

Setting

Argument Type Description

136 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

unit string Physical unit name of the axis

Remarks

The values of an axis can be display by physical units. The unit has to be defined is in
its base without exponential extension like 'n' for nano. The chart is responsible to
display the values in an appropriate way.

Example

' set the physical range of the point axis

objData.AxisPointUnit = "m" 'meter

objData.AxisPointMin = 0.0

objData.AxisRangeRange = 1e-6

See also

AxisPointMin Property, AxisPointRange Property

7.5.1.9 Data::AxisSignalMin

Returns or sets the physical minimal value defined for the minimal data value

Syntax

objData.AxisSignalMin [= minium]

Setting

Argument Type Description

minimum double Physical mininimal value

Remarks

The AxisSignalMin physical value corresponds to the minimal 16Bit data value of -
32768 (-2 1̂5).

Example

' set the physical range of the data values to +-10V

objData.AxisSignalUnit = "V" 'voltage

objData.AxisSignalMin = -10.0

objData.AxisSignalRange = 20.0

See also

AxisSignalUnit Property, AxisSignalRange Property

137Object Reference

©2022 by Nanosurf, all rights reserved

7.5.1.10 Data::AxisSignalName

Returns or sets the name of the signal values stored in the container.

Syntax

objData.AxisSignaöName [= name]

Setting

Argument Type Description

name string Name of the axis

Remarks

The data values stored in a container can be lable by this name. This name is display
on top of the graph in the chart display.

Example

' set the name of the axis

objData.AxisPointName = "X-Axis"

objData.AxisLineName = "Y-Axis"

objData.AxisSignalName = "Topography"

See also

AxisSignaöUnit Property, AxisSignalMin Property, AxisSignalRange Property

7.5.1.11 Data::AxisSignalRange

Returns or sets the physical range value defined for the full data range

Syntax

objData.AxisSignalRange [= range]

Setting

Argument Type Description

range double Physical range of data values

Remarks

138 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The AxisSignalRange value defines the physical value range span over the 16Bit data
value range.
The maximal physical value of the maximal data value (2 1̂5-1=+32767) is
AxisSignalMin+AxisSignalRange.

Example

' set the physical range of the data values to +-10V

objData.AxisSignalUnit = "V" 'voltage

objData.AxisSignalMin = -10.0

objData.AxisSignalRange = 20.0

See also

AxisSignalUnit Property, AxisSignalMin Property

7.5.1.12 Data::AxisSignalUnit

Returns or sets the physical unit used by the signal axis.

Syntax

objData.AxisSignalUnit [= unit]

Setting

Argument Type Description

unit string Physical unit name of the axis

Remarks

The values of the data values stored in the container can be display by physical units.
The unit has to be defined is in its base without exponential extension like 'n' for nano.
The chart is responsible to display the values in an appropriate way.

Example

' set the physical range of the data values to +-10V

objData.AxisSignalUnit = "V" 'voltage

objData.AxisSignalMin = -10.0

objData.AxisSignalRange = 20.0

See also

AxisSignalMin Property, AxisSignalRange Property

139Object Reference

©2022 by Nanosurf, all rights reserved

7.5.1.13 Data::BufferEmpty

Returns or sets the flag indicating if the data container has valid data or not

Syntax

objData.BufferEmpty [= flag]

Setting

Argument Type Description

flag Boolean True if no data are stored in the container

Remarks

The container is flagged as empty when the buffer is initialized or set by this property
manually.
It is automatically flagged as not empty if one of the data store methods are called.

Example

' display the contents of a container

If Not objData.BufferEmpty Then

 MsgBox "Stored signal is :" & objData.AxisSignalName

End If

See also

SetLine Method, SetLineRAW Method, SetPixel Method, SetPixelRAW Method

7.5.1.14 Data::CurrentLine

Returns or sets the number of data lines stored in the container.

Syntax

objData.CurrentLine [= line]

Setting

Argument Type Description

line short defines which line index should be the current one

140 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

One data line is marked as the current one. These marking is distributed to all data
container of a document with the same GroupID. The current line will be used by
charts to highlight the special line. The current line is automatically set by data
modification methods like SetLine().

The range of valid numbers for CurrentLine is 0 to Lines-1.

Example

' extract the first data value of the current line

val = objData.GetPixelRAW(0,objData.CurrentLine)

See also

Lines Property, SetLine Method

7.5.1.15 Data::Lines

Returns or sets the number of data lines stored in the container.

Syntax

objData.Lines [= lines]

Setting

Argument Type Description

lines short lines defines the number data lines stored in the container

Remarks

Data values are stored in the container as a matrix in the form point x lines. The
memory reserved for the matrix is defined by the Points and Lines properties.

The minimum matrix size is a 1 x 1 matrix. The maximum a 2048 x 2048. The size do
not have to be symmetrical (e.g A single measurement line of 128 data points is stored
in a 128 x 1 matrix).

If the size of the matrix is changed all data are lost and the matrix is initialized with zero
values, all line flags are set to Invalid and the buffer is marked as empty.

Example

' initialize a data container for a single measurement line

objData.Points = 256

objData.Lines = 1

141Object Reference

©2022 by Nanosurf, all rights reserved

See also

Points Property, BufferEmpty Property, Setline flags Method

7.5.1.16 Data::Points

Returns or sets the number of data values stored in each data line.

Syntax

objData.Points [= points]

Setting

Argument Type Description

points short points defines the number data values stored in each line

Remarks

Data values are stored in the container as a matrix in the form point x lines. The
memory reserved for the matrix is defined by the Points and Lines properties.

The minimum matrix size is a 1 x 1 matrix. The maximum a 2048 x 2048. The size do
not have to be symmetrical (e.g A single measurement line of 128 data points is stored
in a 128 x 1 matrix).

If the size of the matrix is changed all data are lost and the matrix is initialized with zero
values, all line flags are set to Invalid and the buffer is marked as empty.

Example

' initialize a data container for a single measurement line

objData.Points = 256

objData.Lines = 1

See also

Lines Property, BufferEmpty Property, Setline flags Method

7.5.2 Methods

7.5.2.1 Data::GetDocument

Returns a IDispatch object to the parent Document class.

Syntax

142 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objDoc = objData.GetDocument()

Arguments

 none.

Result

Result Type Description

objDoc Object A IDispatch object to the parent document class

Remarks

The GetDocument() method returns a IDispatch object to the Document class where
this class is stored.

Example

Set objDoc = objData.GetDocument()

if objApp.IsObj(objDoc) then

 MsgBox "The data's are is stored in: " & objDoc.Name

end if

See also

Class Document

7.5.2.2 Data::GetGroup

Returns the data objects group index of the parent Document class.

Syntax

pos = objData.GetGroup()

Arguments

 none.

Result

Result Type Description

pos short Returns the group index of the data container

143Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

The GetGroup() method returns the group index where this data class ist stored in
the list of containers of the parent document class. The exact position is defined in
combination with GetSignal() method.

Example

mysignal = objData.GetSignal()

mygroup = objData.GetGroup()

See also

Class Document, GetSignal Method

7.5.2.3 Data::GetGroupID

Returns the data objects group ID number of the parent Document class.

Syntax

id = objData.GetGroupID()

Arguments

 none.

Result

Result Type Description

id short Returns the ID number of the data container

Remarks

The GetGroupID() method returns the group ID associated with this data container in
the parent document class.

Example

myid = objData.GetGroupID()

mygroup = objData.GetGroupPos()

See also

Class Document, GetGroupPos Method

144 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.5.2.4 Data::GetLine / GetLine2

Returns a array of data values of a stored data line.

Syntax

str_array = objData.GetLine(line,filter,conversion)
variant_array = objData.GetLine2(line,filter,conversion)

Argument

Paramete
r

Type Description

line short desired line index

filter short index of mathematical filter to be used

conversion short index of conversion type of results

Result

Result Type Description

str_array String Character string with comma separated values of all the values of
the data line

variant_arr
ay

double Variant array of numbers of all the values of the data line

Remarks

This method returns a string of data values of a data line stored in the container. The
signal will be extracted and the data values are processed with a filters as available for
the user in the "Chart Toolbar". The result is in a comma separated string in different
numerical formats.

The argument line is the number of the data line to extract. 0 is the bottom line and the
value property Lines -1 the top most one.

The argument filter defines the data processing algorithm to be used.

Table of filter index:

Filter
No.

Filter Name Description

0 FilterRaw No data processing

145Object Reference

©2022 by Nanosurf, all rights reserved

1 FilterMean The mean value is subtracted

2 FilterPlane The background plane is subtracted

3 FilterDerive The derivative of the signal is calculated

4 FilterParabola A second order fit is subtracted

5 FilterPolynominal A forth order fill is subtracted

For more detailed description of the filter algorithm please refer to the Nanosurf
Software Reference Manual.

The argument conversion defines the format of the resulting string array.

Table of conversion index:

Conversio
n No.

Conversion Name Description

0 ConversionBinary16Output as signed 16bit data values

1 ConversionPhysical Output as floating point values in physical base unit

2 ConversionBinary32Output as signed 32bit data values

Example

' get data line 5 with no filter and as 16bit values

dataline = objData.GetLine(5,0,0)

MsgBox dataline

' calc mean value of current line, plane fit filter active and in physical units

dataline = objData.GetLine(objData.Currentline,2,1)

dataarray = Split(dataline,",")

sum = 0.0

For i = 0 To objData.Points-1

 sum = sum + CDbl(dataarray(i))

Next

MsgBox "Mean value of line " & objData.CurrentLine & " is " & (sum /

objData.Points)

See also

Lines Property, SetLine Method

7.5.2.5 Data::GetLineFlags

Get the line attributes

Syntax

146 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

mask = objData.GetLineFlag(line)

Argument

Paramete
r

Type Description

line short desired line index

Result

Result Type Description

mask short Current list of attributs set for the line

Remarks

This method reads the attributes of a line.

See SetLineFlags Method for defined attributs.

Example

' calc mean value of data container but ignore invalid lines

sum = 0.0

validlines = 0

For y = 0 To objData.Lines-1

 If objData.GetLineFlags(y) <> 0 Then

 dataline = objData.GetLine(y,0,1)

 dataarray = Split(dataline,",")

 For x = 0 To objData.Points-1

 sum = sum + CDbl(dataarray(x))

 Next

 validlines = validlines + 1

 End If

Next

if validlines > 0 then

 MsgBox "Mean value of container is " & (sum / validlines)

else

 MsgBox "No valid data in container"

end if

See also

Lines Property, SetLineFlags Method

7.5.2.6 Data::GetLineRAW / GetLineRAW2

Returns a string of data values or a variant array of a stored data line.

Syntax

147Object Reference

©2022 by Nanosurf, all rights reserved

str_array = objData.GetLineRAW(line)
varinat_array = objData.GetLineRAW2(line)

Argument

Paramete
r

Type Description

line short desired line index

Result

Result Type Description

str_array String Character string with comma separated values of all the values of
the data line

varinat_arr
ay

int16,
Int32

Variant array of all the values in the line

Remarks

This method returns a array of data values of a data line stored in the container.
The result is in a comma separated string in a numerical format.
The range of this numbers is for C3000 32Bit, for all other 16Bit.

The argument line is the number of the data line to extract. 0 is the bottom line and the
value property Lines -1 the top most one.

This is a faster but simpler version of GetLine Method. Not data processing nor
conversion is done.

Example

' get quickly the current line

dataline = objData.GetLine(objData.CurrentLine)

MsgBox dataline

See also

Lines Property, GetLine Method, SetLineRAW Method

7.5.2.7 Data::GetPixel / GetPixel2

Returns the data value of a specified point as string

Syntax

148 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

str_val = objData.GetPixel(point,line,filter,conversion)
variant_val = objData.GetPixel2(point,line,filter,conversion)

Argument

Paramete
r

Type Description

point short desired point number

line short desired line index

filter short index of mathematical filter to be used

conversion short index of conversion type of results

Result

Result Type Description

val String String of the data value in the desired conversion format

variant_val double Number of the data value in the desired conversion format

Remarks

This method returns a string with the data value at a specified (point,line) position. The
data value is processed with a filter defined by filter. The result is a string value in
different numerical formats.

The argument point is the position index in the data line to be read. The index has to be
from 0 to Points -1.
The argument line is the number of the data line to extract. 0 is the bottom line and
Lines -1 the top most one.

The argument filter and conversion defines the data processing algorithm and
formatting to be used.
See parameter tables at GetLine.

Example

' get data at (10,20) with no filter and as 16bit values

dataxy = objData.GetPoint(10,20,0,0)

MsgBox dataxy

See also

SetPixel Method, GetLine Method

149Object Reference

©2022 by Nanosurf, all rights reserved

7.5.2.8 Data::GetPixelRAW / GetPixelRAW2

Returns the data value of a specified point as string

Syntax

str_val = objData.GetPixel(point,line)
variant_val = objData.GetPixel(point,line)

Argument

Paramete
r

Type Description

point short desired point number

line short desired line index

Result

Result Type Description

str_val long data value as string

variant_val int16,
int32

data value as integer

Remarks

This method returns the data value at a specified (point,line) position.
The result is in a string in a numerical format.
The range of this numbers is for C3000 32Bit, for all other 16Bit.

The argument point is the position index in the data line to be read. The index has to be
from 0 to Points -1.
The argument line is the number of the data line to extract. 0 is the bottom line and
Lines -1 the top most one.

This is a faster but simpler version of GetPixel Method. Not data processing nor
conversion is done.

Example

' get data at (10,20)

dataxy = objData.GetPointRAW(10,20)

MsgBox dataxy

See also

SetPixel Method, SetPixelRAW Method, GetLine Method

150 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.5.2.9 Data::GetSignal

Returns the data objects signal number of the parent Document class.

Syntax

pos = objData.GetSignal()

Arguments

 none.

Result

Result Type Description

pos short Returns the signal position number of the data container

Remarks

The GetSignal() method returns the signal position number where this data class ist
stored in the list of containers of the parent document class. The exact position is
defined in combination with GetGroup() method.

Example

mysignal = objData.GetSignal()

mygroup = objData.GetGroup()

See also

Class Document, GetGroup Method

7.5.2.10 Data::SetLine / SetLine2

Store a string of data values into the container

Syntax

151Object Reference

©2022 by Nanosurf, all rights reserved

ok = objData.SetLine(line,conversion, str_dataarray)
ok = objData.SetLine(line,conversion, variant_dataarray)

Argument

Parameter Type Description

line short desired line index

conversion short conversion type used for processing data string

dataarray short String array with comma separated values

variant_dataarra
y

number variant of numbers array with comma separated values

Result

Result Type Description

ok Boolean True is successful

Remarks

This method write a string of data values into a data line of the container.

The argument line is the number of the data line to be overwritten. 0 is the bottom line
and the value property Lines -1 the top most one.

The argument conversion defines the format of the data string array. Table of
conversion index:

Conversio
n No.

Conversion Name Description

0 ConversionBinary16 Values are signed 16bit data number

1 ConversionPhysical Values are floating point number in physical base unit

2 ConversionBinary32 Values are signed 32bit data number

The actual data is parameter dataarray. It have to be a comma separated string array
of values in the specified format as declared in conversion.

Note: There are localization version of the operating systems where numbers are
displayed with a comma as decimal points (e.g. German version of Windows). To
support these OS versions, its possible to use a semi column character to separate
numbers.

Example

152 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

' flatten and apply maximum threshold

MaxValue = 10.0e-9 'm

For curline = 0 To objData.Lines-1

 dataline = objData.GetLine(curline,2,1)

 dataarray = Split(dataline,",")

 For i = 0 To objData.Points-1

 If CDbl(dataarray(i)) > MaxValue Then

 dataarray(i) = MaxValue

 End If

 Next

 dataline = Join(dataarray,";")

 ok = objData.SetLine(curline,1,dataline)

Next

See also

Lines Property, Points Property, GetLine Method

Version info

 Semi column as separator character: Software v1.6.1 or later

7.5.2.11 Data::SetLineFlags

Set the line attributes

Syntax

ok = objData.SetLineFlag(line, mask)

Argument

Paramete
r

Type Description

line short desired line index

mask short List of attributes to set

Result

Result Type Description

ok Boolean True is successful

Remarks

153Object Reference

©2022 by Nanosurf, all rights reserved

This method defines the attributes of a line. to set multible attributes just added they
values together.

Table of attributes index:

Atrribute
value

Conversion Name Description

1 DataValid The values in the line are valid number for processing

2 CurrentData This attribute marks the data values in the line as new

At initialisation of a Data object or after resizing the DataVaild attribute is cleared. It is
set automatically by a call of SetLine() method. Data processing algorithm should
ignore data lines with cleared DataVaild attribute.
A data line can have the CurrentData attribute set. This is useful to distinguish between
old and new data in the same data container (e.g during a imaging a container may be
partly filled by data measured by an up frame while scanning down and some data are
overwriten with the new scan line as they are measured).

Example

' mark line zero as Valid and Current

ok = objData.SetLineFlag(0,1+2)

See also

Lines Property, GetLineFlags Method

7.5.2.12 Data::SetLineRAW / SetLineRAW2

Store a string of data values into the container

Syntax

ok = objData.SetLineRAW(line, str_dataarray)
ok = objData.SetLineRAW2(line, variant_dataarray)

Argument

Parameter Type Description

154 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

line short desired line index

str_dataarray short String array with comma separated values

varinat_dataarra
y

long binary array of values

Result

Result Type Description

ok Boolean True is successful

Remarks

This method write a string of data values into a data line of the container.

The argument line is the number of the data line to be overwritten. 0 is the bottom line
and the value property Lines -1 the top most one.

The actual data is parameter dataarray.
The result is in a string array in a numerical format.
The range of this numbers is for the C3000 controller 32Bit, for all other systems 16Bit.

This is a faster but simpler version of SetLine Method. Not data processing nor
conversion is done.

Example

' replace some data values in the top line

ok = objData.SetLine(objData.Lines-1,"-1,2,-3,4,-5,6,-7,8")

See also

Lines Property, Points Property, GetLineRAW Method, SetLine Method

7.5.2.13 Data::SetPixel / SetPixel2

Overwrite a data point with new value

Syntax

ok = objData.SetPixel(point,line,conversion, str_value)
ok = objData.SetPixel2(point,line,conversion, variant_value)

155Object Reference

©2022 by Nanosurf, all rights reserved

Argument

Paramete
r

Type Description

point short point index of destination position

line short line index of destination position

conversion short conversion type used for processing data string

str_value string string with value in specified format

variant_val
ue

double double value in specified format

Result

Result Type Description

ok Boolean True is successful

Remarks

This method write a new value to a specified position in the container.

The argument point is the position index in the data line to be read. The index has to be
from 0 to Points -1.
The argument line is the number of the data line to extract. 0 is the bottom line and
Lines -1 the top most one.
The argument conversion defines the data format to be used. See parameter table at
SetLine.
The argument value contains the new value in the specified format as described in
conversion.

Example

' write at (0,0) the value 1nm

objData.AxisSignalUnit = "m"

ok = objData.SetPixel(0,0,1,"1e-9")

See also

Lines Property, Points Property, SetLine Method

7.5.2.14 Data::SetPixelRAW / SetPixelRAW2

Overwrite a data point with new value

Syntax

156 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

ok = objData.SetPixel(point,line,str_value)
ok = objData.SetPixel2(point,line,variant_value)

Argument

Paramete
r

Type Description

point short point index of destination position

line short line index of destination position

str_value long New data value as string

variant_val
ue

long new data value as number

Result

Result Type Description

ok Boolean True is successful

Remarks

This method write a new value to a specified position in the container.

The argument point is the position index in the data line to be read. The index has to be
from 0 to Points -1.
The argument line is the number of the data line to extract. 0 is the bottom line and
Lines -1 the top most one.
The argument value contains the new value to be stored.
The range of this number is for the C3000 controller 32Bit, for all other systems 16Bit.

This is a faster but simpler version of SetPixel Method. Not data processing nor
conversion is done.

Example

' write at (0,0) the value 1nm

objData.AxisSignalUnit = "m"

ok = objData.SetPixel(0,0,1,"1e-9")

See also

Lines Property, Points Property, SetLine Method

157Object Reference

©2022 by Nanosurf, all rights reserved

7.6 Document

The Document class is a container for measured data and its visual representation.

Complete documents can be loaded or stored from/to the file system.

Its information is stored in three lists of the following types:

1. Measured values: Data values for signal channels are stored in data container.
Referenced by Data classes.
2. Visual appearance: Charts are displaying measured data with different styles on
screen. Each chart is stored in a Chart class.
3. General information: Additional information is grouped in sections of key value pairs.
Each info section is stored in a Info class.

Objects in these lists are retrieved by search methods.

New objects can be created and existing objects in the lists can be deleted.

For detailed description on how these lists are organized, refer to the individual chapter of
Class Data, Class Chart and Class Info.

Table of properties for Document class:

Property name Purpose

Name Contains then filename of the document

Table of methods for general usage of Document class:

Method name Purpose

Load Load the contents of a file into the document

Save Saves the content of the document into a file

ShowWindow Control the windows visual state

Table of methods for Chart object of document class:

Method name Purpose

ChartCount Retrieves the number of charts displayed in the document window

ChartCreate Create a new Chart object and display it

ChartGetActive Return a Chart object to the currently active chart

158 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

ChartGetByPos Return a Chart object to the chart at a position

ChartDeleteByPos Removes the chart at position

ChartDeleteAll Removes all charts of this document

Table of methods for Data object of document class:

Method name Purpose

DataGroupCount Retrieves the number of data groups

DataSignalCount Retrieves the number of data objects in a specified group

DataCreate Creates a new Data class for a specified group and signal

DataGetActive Returns a Data object of the signal displayed by the active chart

DataGetByName Returns a Data object with the specified group and signal name

DataGetByPos Returns a Data object with the specified group and signal number

DataDeleteByName Deletes the stored values of a specified group and signal name

DataDeleteByPos Deletes the stored values of a specified group and signal number

DataDeleteGroup Deletes a complete group of values

DataDeleteAll Deletes all measured values

DataGetGroupID Retrieves the ID number of a specified group

DataSetGroupID Sets the ID number of a specified group

DataGetGroupName Retrieves the name of a specified group

DataSetGroupName Change the name of a specified group

DataGetGroupPos Retrieves the index of a named group

DataGetSignalPos Retrieves the number of a signal in a group an known signal name

Table of methods for Info objects of document class:

Methode name Purpose

InfoCount Retrieves the number of info section in the document

InfoCreate Creates a new Info class with a specified name

InfoGetByName Returns a Info object with a specified name

InfoGetByPos Returns a Info object at a specified position

InfoDeleteByName Removes a information section with a specified name

InfoDeleteByPos Removes a information section at a specified position

159Object Reference

©2022 by Nanosurf, all rights reserved

InfoDeleteAll Removes all sections

7.6.1 Properties

7.6.1.1 Document::Name

Returns or sets the filename of the document.

Syntax

objDoc.Name [= filename]

Setting

Argument Type Description

filename String filename is a string containing the path and filename of the
document.

Remarks

The Name property is containing the unique name of the document. If it is loaded from
file or stored already to a file the name is its path and filename.
The name of a newly created document is a path to its temporary storage and a
automaticaly assigne name.

Example

Dim objDoc : Set objDoc = objApp.DocCreate("",Nothing)

MsgBox "Auto assigned name is " & objDoc.Name

See also

DocCreate Method, Load Method, Save Method

7.6.2 Methods

7.6.2.1 Document::ChartCount

Retrieves the number of charts displayed for this document

Syntax

count = objDoc.ChartCount()

160 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Arguments

none.

Result

Result Type Description

count short Returns the number of charts displayed

Remarks

The ChartCount() method retrieves the number of charts currently defined and
displayed for this document. Returns zero if no charts is defined yet.

Example

count = objDoc.ChartCount()

See also

 Class Chart, ChartCreate Method

7.6.2.2 Document::ChartCreate

Creates a new charts and returns an Chart object to it.

Syntax

objChart = objDoc.ChartCreate(pos,srcchart)

Arguments

Argument Type Description

pos string The display position of the chart

srcchart object The contents of the source chart is copied if srcchart is not Nothing

Result

Result Type Description

objChart Object Returns an IDispatch object to the new chart or an invalid object

Remarks

The ChartCreate() method creates a new data display chart in the documents

161Object Reference

©2022 by Nanosurf, all rights reserved

window.

The chart is inserted in the list of charts at position specified in the argument. If the
position is already occupied by another chart the old chart is shifted to the next higher
position. If the new position is higher than the last position it is replaced by the next
highest position. If the position is negative the chart is placed at the end of the list.
More information about the charts position reffer to Chart.Pos Property.

If the second argument srcchart is not Nothing the source charts contents is copied.

Example

' create a new chart at the top left corner of the window

Set objChart = objDoc.ChartCreate(0,Nothing)

' Create a Copy of the selected chart and append it

Set objSrc = objDoc.ChartGetActive()

Set objChart = objDoc.ChartCreate(-1,objSrc)

See also

Class Chart

7.6.2.3 Document::ChartDeleteAll

Removes all charts of the document

Syntax

done = objDoc.ChartDeleteAll()

Arguments

None.

Result

Result Type Description

done Boolean Returns True if all charts could be removed otherwise False

Remarks

The ChartDeleteAll() method removes all charts of the document.

162 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Example

' close all charts of active document

Set objDoc = objApp.DocGetActive()

If objApp.IsObj(objDoc) Then

 objDoc.ChartDeleteAll

End If

See also

Class Chart

7.6.2.4 Document::ChartDeleteByPos

Deletes the n'th chart

Syntax

done = objDoc.ChartDeleteByPos(pos)

Arguments

Argument Type Description

pos short Removes the chart at specified position

Result

Result Type Description

done Boolean Returns True if the chart could be deleted otherwise False

Remarks

The ChartDeleteByPos() method deletes the chart with position pos.
The argument has to be positiv and lower than the value return by ChartCount().

Example

' close last chart

objDoc.ChartDeleteByPos(objDoc.ChartCount() - 1)

' close active chart

Set objChart = objDoc.ChartGetActive()

objDoc.ChartDeleteByPos(objChart.Pos)

See also

163Object Reference

©2022 by Nanosurf, all rights reserved

 Class Chart, ChartCount Method, Chart.Pos Property

7.6.2.5 Document::ChartGetActive

Returns a Chart class object associated with the current active chart.

Syntax

objChart = objDoc.ChartGetActive()

Arguments

none

Result

Result Type Description

objChart Object Returns a IDispatch object to the chart object which is active or an invalid
object reference if no active chart is available.

Remarks

The ChartGetActive() method returns a IDispatch object to the active chart. If no
chart is selected an invalid object is returned. This can be checked by objApp.IsObj().

Example

' get access to the current chart

Set objChart = objDoc.ChartGetActive()

If Not objApp.IsObj(objChart) Then

 MsgBox "No chart selected"

End If

See also

Class Chart, Chart.Active Property

164 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.6.2.6 Document::ChartGetByPos

Returns a Chart class object at the specified position.

Syntax

objChart = objDoc.ChartGetByPos(pos)

Arguments

Argument Type Description

pos short chart position number

Result

Result Type Description

objChart Object Returns a IDispatch object for the chart at the given position or an invalid
object if pos >= ChartCount()

Remarks

The ChartGetByPos method returns a IDispatch object to the chart at a specified
position. If position is out of range an invalid object is returned. This can be checked by
objApp.IsObj().

The position is the index into an list which keeps track of all charts of a document. It
represents the n'th chart counted from top to down and left to right in the document
window.

Example

' get name of signal displayed in the first chart

Set objChart = objDoc.ChartGetByPos(0)

If objApp.IsObj(objInfo) Then

 Set objData = objDoc.DataGetByPos(objChart.Group,objChart.Signal)

 MsgBox "First chart displayes signal = " & objData.AxisSignalName

Else

 MsgBox "No Chart available"

End If

See also

Class Chart,

165Object Reference

©2022 by Nanosurf, all rights reserved

7.6.2.7 Document::DataCreate

Creates a new data container object and returns a reference to it.

Syntax

objData = objDoc.DataCreate(group,signal,srcinfo)

Arguments

Argument Type Description

group short Index of the group. If group does not exists it is created.Use -1 to
create the data container in a new group with automaticaly
choosen free index.

signal short Number of the signal channel. If signal is not existing ist is created. Use -1
to create the data container with automaticaly choosen free signal number.

srcdata object A reference to a source data container to copy its contents into the new
one or Nothing .

Result

Result Type Description

objData Object Returns an IDispatch object to the new data container or an invalid object

Remarks

The DataCreate method creates a new data container object. A Data container stores
the values of a signal as a result of a measurement or a calculation. Tha Data
containers which are measured synchronously are stored in a group (e.g Group "Scan
Forward" with two data container for signal "Topography" and "Phase").

Multiple groups of data containers can be stored in a document (e.g A document
contains group "Scan Forward", "Spectroscopy Forward" and "Spectroscopy
Backward", another document just contains the group "Cross section").

To place a Data Container in a document one have to define its group index and its
signal number. If the Imaging or Spectroscopy Modul created the document two of the
signal numbers have a fix assosiation with the measurement channels.

0 - Z-Feedback Error input signal
1 - Topography Signal

Note:
Individual signal should be referenced for future compatibility reason by their signal
names as much as possible. Use the signal number for loops through all signals or as
result of DataGetSignalPos(). Also the group indexes should only be used with loops
or as result of DataGetGroupPos().

166 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

DataCreate() cannot overwriting an existing data container and returns a invalid
reference if a data container at the arguments position is allredy defined.

If one just need a new group to place a result of a calculation one can use -1 as a group
index for the group and or the signal argument.

If a new created data container should be preprared with existing data values set the
argument srcdata to a valid source data object.

Example

' create a new channel in a new group and call the allocated group 'Result'

Set objData = objDoc.DataCreate(-1,-1,Nothing)

objDoc.SetGroupName objData.GetGroupPos(),"Result"

' Copy the selected data into a new data container of a new document

Set objSrcData = objSrcDoc.DataGetActive()

If objApp.IsObj(objSrcData) Then

 Set objDestDoc = objApp.DocCreate("")

 Set objDestData = objDestDoc.DataCreate(-

1,objSrcData.GetSignalPos(),objSrcData)

End If

See also

Class Data, DataGetGroupPos Method, DataGetSignalPos Method, Application.IsObj
Method

7.6.2.8 Document::DataDeleteAll

Deletes all data containers of a document.

Syntax

ok = objDoc.DataDeleteAll()

Arguments

none

Result

Result Type Description

ok boolean True if all groups could be deleted.

167Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

The DataDeleteAll() method deletes all data containers and all groups within a
document.
If deletion could not be done False is returned.

Example

' Empty a document from all data

ok = objDoc.DataDeleteAll()

See also

Class Data, DataDeleteByName Method, DataDeleteAll Method, DataDeleteGroup
Method, DataDeleteAll Method

7.6.2.9 Document::DataDeleteByName

Deletes a data container.

Syntax

ok = objDoc.DataDeleteByName(groupname, signalname)

Arguments

Argument Type Description

groupnamestring name of group

signalnamestring name of signal

Result

Result Type Description

ok boolean True if data container could be deleted.

Remarks

The DataDeleteByName() method deletes a data container with specified group name
and signal name.
If the data container does not exists False is returned.

Example

' Delete a specific data container

ok = objDoc.DataDeleteByName("Cross Section","Phase")

168 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Class Data, DataDeleteByPos Method, DataDeleteGroup Method, DataDeleteAll
Method

7.6.2.10 Document::DataDeleteByPos

Deletes a data container.

Syntax

ok = objDoc.DataDeleteByPos(group, signal)

Arguments

Argument Type Description

group short index of group.

signal short signal number

Result

Result Type Description

ok boolean True if data container could be deleted.

Remarks

The DataDeleteByPos() method deletes a data container with specified group index
and signal number.
If the data container does not exists False is returned.

Example

' Delete current data container

Set objData = objDoc.DataGetActive()

If objApp.IsObj(objData) Then

 ok = objDoc.DataDeleteByPos(objData.GetGroupPos, objData.GetSignalPos)

End If

See also

Class Data, DataDeleteByName Method, DataDeleteGroup Method, DataDeleteAll
Method

169Object Reference

©2022 by Nanosurf, all rights reserved

7.6.2.11 Document::DataDeleteGroup

Deletes a group of data containers.

Syntax

ok = objDoc.DataDeleteGroup(group)

Arguments

Argument Type Description

group short index of group.

Result

Result Type Description

ok boolean True if group could be deleted.

Remarks

The DataDeleteGroup() method deletes all data containers within a specified group
and the group itself.
If the group with groupindex does not exists False is returned.

Example

' Delete backward spectroscopy

ok = objDoc.DataDeleteGroup(objDoc.GetGroupPos("Specroscopy Backward"))

See also

Class Data, DataDeleteByName Method, DataDeleteGroup Method, DataDeleteAll
Method

7.6.2.12 Document::DataGetActive

Returns a Data class object associated with the current active chart.

Syntax

170 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objData = objDoc.DataGetActive()

Arguments

none

Result

Result Type Description

objData Object Returns a IDispatch object to the data object which is displayed by the
active chart or an invalid object if no active chart is available.

Remarks

The DataGetActive() method returns a IDispatch object to the data container which is
displayed by the active chart. If no chart is selected an invalid object is returned. This
can be checked by objApp.IsObj().

Example

' get access to the current data

Set objData = objDoc.DataGetActive()

If Not objApp.IsObj(objData) Then

 MsgBox "No chart selected"

End If

See also

Class Data, Class Chart, Chart.Active Property

7.6.2.13 Document::DataGetByName

Returns a Data class object with specified name.

Syntax

objData = objDoc.DataGetByName(groupname, signalname)

Arguments

Argument Type Description

171Object Reference

©2022 by Nanosurf, all rights reserved

group string name of group.

signal string name of signal

Result

Result Type Description

objData Object Returns a IDispatch object for the data object with given name. If no data
container is found an invalid object is returned.

Remarks

The DataGetByName() method returns a IDispatch object to the data container with
spec ivied names. If no container is found an invalid object is returned. This can be
checked by objApp.IsObj().

Example

' get access to topography of forward scan

Set objData = objDoc.DataGetByName("Spectroscopy Forward","Deflection")

If Not objApp.IsObj(objData) Then

 MsgBox "No Image available"

End If

See also

Class Data

7.6.2.14 Document::DataGetByPos

Returns a Data class object at the specified position.

Syntax

objData = objDoc.DataGetByPos(group, signal)

Arguments

Argument Type Description

group short index of group.

signal short number of signal in group

Result

172 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result Type Description

objData Object Returns a IDispatch object for the data object at selected position or an
invalid object if no data object is at selected position.

Remarks

The DataGetByPos() method returns a IDispatch object to the data container at a
specified position. If position is out of range an invalid object is returned. This can be
checked by objApp.IsObj().

The group index is a zero based index number. The index have to be less than
DataGroupCount().
The signal number is a zero based number of the channel. The number of to be less
than DataChannelCount().

Example

' get access to topography of forward scan

Set objData = objDoc.DataGetByPos(objDoc.GetGroupPos("Scan Forward"),1)

If Not objApp.IsObj(objData) Then

 MsgBox "No Image available"

End If

See also

Class Data, DataGroupCount Method, DataSignalCount Method, DataGetGroupPos
Method

7.6.2.15 Document::DataGetGroupID

Gets the ID value of a group.

Syntax

id = objDoc.DataGetGroupID(group)

Arguments

Argument Type Description

group short index of group.

Result

173Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

id short ID of group or -1 if group not found

Remarks

The DataGetGroupID() method return the ID number of a group. If the group is not
defined a value of -1 is returned.

Example

' delete all phase channels of a spectroscopy in a document

SpecID = 1

For g = 0 To objDoc.DataGroupCount()-1

 If objDoc.GetGroupID(g) = SpecID Then

 ok = objDoc.DataDeleteByPos(g,objDoc.DataGetSignalPos(g,"Phase"))

 End If

Next

See also

Class Data, DataSetGroupID Method

7.6.2.16 Document::DataGetGroupName

Returns the name of a group.

Syntax

groupname = objDoc.DataGetGroupName(group)

Arguments

Argument Type Description

group short index of group.

Result

Result Type Description

groupnamestring Name of group or "" if not group index is out of range.

Remarks

174 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The DataGetGroupName() method returns the name of a group. If the group with the
given index is not defined an empty string is returned.

Example

' Display a list of all groups

groupnames = ""

For i = 0 To objDoc.GetGroupCount()-1

 groupnames = groupnames & vbCRLF & objDoc.DataGetGroupName(i)

Next

MsgBox "Available Groups in Document:" & groupnames

See also

Class Data, DataGroupCount Method

7.6.2.17 Document::DataGetGroupPos

Returns the group index of a specified group name.

Syntax

index = objDoc.DataGetGroupPos(groupname)

Arguments

Argument Type Description

groupnamestring name of group

Result

Result Type Description

index short index number of the group.

Remarks

The DataGetGroupPos() method returns the index number into the list of defined
groups for the group with specified name. If no group is found a value of -1 is returned.

To get a specific group it is recommended to get its index by this method because the
group index of a certain group can vary from document to document. (e.g: "Scan
Backward" group can have index 0 or 1 depending on the measurement mode during
imaging)

Example

' search for topography of backward scan

175Object Reference

©2022 by Nanosurf, all rights reserved

scanpos = objDoc.DataGetGroupPos("Scan Backward")

If scanpos > 0 Then

 Set objData = objDoc.DataGetByPos(scanpos,1)

End If

See also

Class Data, DataGetByPos Method

7.6.2.18 Document::DataGetSignalPos

Returns the signal number of a specified signal name.

Syntax

pos = objDoc.DataGetSignalPos(group, signalname)

Arguments

Argument Type Description

group short index of group.

signalnamestring name of signal

Result

Result Type Description

pos short position of the signal in the selected group.

Remarks

The DataGetSignalPos() method returns the number of the signal with the given
name. If no signal is found a value of -1 is returned.

Example

' search for tip current signal number

pos = objDoc.DataGetSignalPos(0,"Tip Current")

If pos < 0 Then

 MsgBox "No tip current data available"

End If

See also

Class Data

176 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.6.2.19 Document::DataGroupCount

Retrieves the number of data groups in this document

Syntax

count = objDoc.DataGroupCount()

Arguments

none.

Result

Result Type Description

count short Returns the number of data groups

Remarks

The DataGroupCount method retrieves the number of data groups available in this
document. Returns zero if no group is defined.
The Data objects of synchronous measured signals are stored in a group. The groups
are sequentially numbered from zero to count-1.

Example

count = objDoc.DataGroupCount()

See also

 Class Data, DataCreate Method, DataGetByPos Method, DataDeleteByPos Method

7.6.2.20 Document::DataSetGroupID

Sets the ID value of a group.

Syntax

ok = objDoc.DataSetGroupID(group, groupid)

Arguments

177Object Reference

©2022 by Nanosurf, all rights reserved

Argument Type Description

group short index of group.

groupid short id number of group

Result

Result Type Description

ok boolean True if ID could be changed.

Remarks

The DataSetGroupID() method set the ID number of group.

ID numbers a used to identify groups which contains data of the same style. (e.g Scan
Forward, and Scan Backward groups contains similar data, also Spectroscopy forward
and Spectroscopy Backward). The ID number of such groups can be set to an equal
number. The software or a script can then process data containers of a groups
together if desired.

The "Current Line" arrow of "Color Map" charts is using this feature to change the
current line of all signal channels in all groups with the same group id number if the
user drag the arrow up and down.

Each new created group by DataCreate() gets a new group id in the range 256 to
32767.

It is recommend to used ID number in the range from 128 to 255 for user defined ID
and overwrite only dynamically defined ID but not standard IDs set by the main
applications modules.

Predefined group IDs are in the range 0 to 127. The following are defined:

Group ID Description

0 Scan group ID. Data groups created by the imaging module.

1 Spectroscopy group ID. Data groups created by the spectroscopy module.

Example

' Create two new data container of individual groups

' and mark them with the same user defined group ID

Set objDataOne = objDoc.DataCreate(-1,-1,Nothing)

Set objDataTwo = objDoc.DataCreate(-1,-1,Nothing)

If objApp.IsObj(objDataOne) Then

 objDoc.DataSetGroupID(objDataOne.GetGroupPos,127)

End If

If objApp.IsObj(objDataTwo) Then

 objDoc.DataSetGroupID(objDataTwo.GetGroupPos,127)

178 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

End If

See also

Class Data, DataCreate Method

7.6.2.21 Document::DataSetGroupName

Sets the name of a group.

Syntax

ok = objDoc.DataSetGroupName(group, groupname)

Arguments

Argument Type Description

group short index of group.

groupnamestring name of group

Result

Result Type Description

ok boolean True if name for specified group could be set

Remarks

The DataSetGroupName() method set the name of group.

Use this function to give a group created by DataCreate() a nice name. It is not
recommended to overwrite group names generated be the imaging or spectroscopy
modul.

Example

' Create a new data container in a new group and name the group

Set objData = objDoc.DataCreate(-1,-1,Nothing)

If objApp.IsObj(objData) Then

 objDoc.DataSetGroupName(objData.GetGroupPos,"My Analysis")

End If

See also

179Object Reference

©2022 by Nanosurf, all rights reserved

Class Data, DataCreate Method

7.6.2.22 Document::DataSignalCount

Retrieves the maximal number of signal channels stored in a group

Syntax

count = objDoc.DataSignalCount(group)

Arguments

Argument Type Description

group short position index for group of interest

Result

Result Type Description

count short Returns the number of signals in the specified group

Remarks

The DataSignalCount method retrieves the number of signal channels available in a
group. Returns zero if no channels are available.
The Data objects of synchronous measured signals are stored in the same group.

Not all of the available signal channels of a group have to be measured. If referenced
by DataGetByPos() an undefined Data object is returned if the position of the signal
channel is between zero and count-1 but contains no data.

Example

' get the amount of real measured signal channels

count = objDoc.DataSignalCount(0)

measured = 0

For pos = 0 To count-1

 If objApp.IsObj(objDoc.DataGetByPos(pos)) Then

 measured = measured + 1

 End If

Next

MsgBox "Available signal channels: " & measured

See also

 Class Data, DataGroupCount Method, DataCreate Method, DataGetByPos Method,
DataDeleteByPos Method

180 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.6.2.23 Document::InfoCount

Retrieves the number of information sections of this document

Syntax

count = objDoc.InfoCount()

Arguments

none.

Result

Result Type Description

count short Returns the number of information sections

Remarks

The InfoCount method retrieves the number of information sections of this document.
Returns zero if no section is created.

Example

count = objDoc.InfoCount()

See also

 Class Info, InfoCreate Method, InfoGetByPos Method, InfoDeleteByPos Method

7.6.2.24 Document::InfoCreate

Creates a new information section and returns an Info object to it.

Syntax

181Object Reference

©2022 by Nanosurf, all rights reserved

objInfo = objDoc.InfoCreate(sectioname,pos,srcinfo)

Arguments

Argument Type Description

sectionna
me

string The titel of the new section

pos short The position in the list of information section

srcinfo object The contents of the source info is copied if srcinfo is not Nothing

Result

Result Type Description

objInfo Object Returns an IDispatch object to the new information section or an invalid
object

Remarks

The InfoCreate method creates a new information section in the documents list of
informations.

The titel of the new section is provided with the argument sectionname.
The pos argument defines the initilal display position of the new section. A value of -1
palces the section to the end of the list.
If the argument srcinfo is not Nothing its contents is copied.

Example

' create a new empty section

Set objInfo = objDoc.InfoCreate("Analysis Results",0,Nothing)

' Copy the contents of the 'Scan' Section from one document to another

Set objSrcInfo = objSrcDoc.InfoGetByName("Scan")

Set objDestInfo = objDestDoc.InfoCreate("Scan",0,objSrcInfo)

See also

Class Info

182 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.6.2.25 Document::InfoDeleteAll

Removes all information section of a document

Syntax

done = objDoc.InfoDeleteAll()

Arguments

None.

Result

Result Type Description

done Boolean Returns True if all section could be removed otherwise False

Remarks

The InfoDeleteAll method removes all information section of the document.

Example

' empfty information section

ok = objDoc.InfoDeleteAll()

If objDoc.InfoCount() > 0 Then

 MsgBox "Error: Could not remove all information sections!"

End If

See also

Class Info, InfoCount Method

7.6.2.26 Document::InfoDeleteByName

Deletes the info section with a specified name

Syntax

done = objDoc.InfoDeleteByName(name)

Arguments

Argument Type Description

name string Remove the information section from the document with this name

183Object Reference

©2022 by Nanosurf, all rights reserved

Result

Result Type Description

done Boolean Returns True is section could be found and removed otherwise
False

Remarks

The InfoDeleteByName method removes the information section with the title name.
The argument has to be a string. If the information section is found this method returns
False.

Example

' remove analysis section

Set oDoc = objApp.DocGetActive()

If objApp.IsObj(oDoc) Then

 objDoc.InfoDeleteByName("Result")

End If

See also

 Class Info, Name Property

7.6.2.27 Document::InfoDeleteByPos

Deletes the n'th information section

Syntax

done = objDoc.InfoDeleteByPos(pos)

Arguments

Argument Type Description

pos short Removes the information section at specified position

Result

Result Type Description

done Boolean Returns True if the section could be deleted otherwise False

Remarks

184 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The InfoDeleteByPos method deletes the information section with position pos.
The argument has to be positiv and lower than the value return by InfoCount().

Example

' close last document

objDoc.InfoDeleteByPos(objDoc.InfoCount() - 1)

See also

 Class Info, InfoCount Method

7.6.2.28 Document::InfoGetByName

Returns a Info class object with the specified name.

Syntax

objInfo = objDoc.InfoGetByName(name)

Arguments

Argument Type Description

name string Name of information section

Result

Result Type Description

objInfo Object Returns a IDispatch object to the information section with the specified
name or an invalid object if no section is not found

Remarks

The InfoGetByName method returns a IDispatch object to the information section with
the specified name in the argument.
If no section with name is found a invalid object is returned. This can be checked by
objApp.IsObj().

The name of a section is its title displayed in the Data Info Panel.

Example

Set objInfo = objDoc.InfoGetByName("Scan")

If Not objApp.IsObj(objDoc) Then

 MsgBox "No Section called 'Scan' found"

185Object Reference

©2022 by Nanosurf, all rights reserved

End If

See also

Class Info

7.6.2.29 Document::InfoGetByPos

Returns a Info class object at the specified position.

Syntax

objInfo = objDoc.InfoGetByPos(pos)

Arguments

Argument Type Description

pos short Section position number.

Result

Result Type Description

objInfo Object Returns a IDispatch object for the info section at position pos or an invalid
object if pos >= InfoCount()

Remarks

The InfoGetByPos method returns a IDispatch object to the information section at a
specified position. If position is out of range an invalid object is returned. This can be
checked by objApp.IsObj().

The position is the index into an list which keeps track of all information section of a
document. It represents the n'th section as shown in the Data Info Panel.

Example

Set objInfo = objDoc.InfoGetByPos(0)

If objApp.IsObj(objInfo) Then

 MsgBox "First section is = " & objInfo.Name

End If

See also

Class Info, InfoCount Method, InfoGetByName Method

186 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.6.2.30 Document::Load

Loads the contents of an nid-File into the document.

Syntax

ok = objDoc.Load(filename)

Arguments

Argument Type Description

filename string Filename of a document or an empty string ("") to open a file open
dialog

Result

Result Type Description

ok Boolean Returns True if successful

Remarks

The Load method loads the file with the path in filename. If filename is an empty string
a file open dialog is displayed.

If the user click abort or the file could not be loaded the method return False.

Example

If objDoc.Load("") Then

 MsgBox "File" & objDoc.Name & "is loaded"

End If

See also

 Name Property, Save Method

187Object Reference

©2022 by Nanosurf, all rights reserved

7.6.2.31 Document::Save

Save the document content to an nid-File.

Syntax

ok = objDoc.Save(filename)

Arguments

Argument Type Description

filename string Filename of a document or an empty string ("") to open a file save
dialog

Result

Result Type Description

ok Boolean Returns True if successful

Remarks

The Save method stores document object to a filename. If filename is an empty string
a file save dialog is displayed.

If the user click abort or the file could not be saved the method return False.

Example

If objDoc.Save("MyDocument.nid") Then

 MsgBox "Document saved to " & objDoc.Name

End If

See also

 Name Property, Load Method

7.6.2.32 Document::ShowWindow

Defines the display style of the document window.

Syntax

188 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objDoc.ShowWindow(style)

Arguments

Argument Type Description

style short Visibility style number

Result

None.

Remarks

The ShowWindow method sets the visibility state of the window. Use one of the
following values:

Name Value Description

SW_HIDE 0 Hides this window and passes activation to another window

SW_NORMAL 1 Activates and displays the window. If the window is minimized
or maximized, Windows restores it to its original size and
position

SW_MINIMIZED 2 Activates the window and displays it as an icon

SW_MAXIMIZED 3 Activates the window and displays it as a maximized window

SW_SHOWNOAC
TIVE

4 Displays the window in its most recent size and position. The
window that is currently active remains active

SW_ACTIVATE 5 Activates the window and displays it in its current size and
position

SW_MINIMIZE 6 Minimizes the window and activates the top-level window in the
system's list.

SW_MINNOACTIV
E

7 Displays the window as an icon. The window that is currently
active remains active

SW_SHOWNA 8 Displays the window in its current state. The window that is
currently active remains active

SW_RESTORE 9 Activates and displays the window. If the window is minimized
or maximized, Windows restores it to its original size and
position

189Object Reference

©2022 by Nanosurf, all rights reserved

Example

objDoc.ShowWindow(3) ' maximize and activate this document

See also

 None.

7.7 Info

The Info class is a container which stores a set of values along the measured data in a
document. These information are displayed in the DataInfo Panel.

A document can store multiple Info classes in a list. To identify individual members each
instant has a name and a position in the list.

The values in a Info class are stored as name and value pairs. To reference a value one
can use its name or position in the container. The position in the container also defines the
display order in the DataInfo Panel.

The application is using these Info classes to store measurement parameters like
Feedback settings or scan head calibration information. Predefined Info class names are
the following:

Section names Purpose

Global Version numbers and calibration information

Feedback Z-Feedback controller parameters like set point

Scan Contains scan parameters like scan speed

Spec Spectroscopy parameters

Tool Active Tools result

Result Results of operation point adjustment in dynamic force mode

Modules Information about installed Modules

The user is free to define new Info sections for their own purpose (e.g: Store analysis
results of a script function or sample preparation information)

Table of properties for Info class:

Property name Purpose

190 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Name Contains name or title of the information section

Pos Position in the list of info class of the document

Table of methods for general usage of Document class:

Method name Purpose

GetDocument Returns the IDispatch class of the parent document

Count Returns the number of values stored in this class

SetByName Set a value with a specified name

GetByName Get a value with a specified name

SetByPos Set a value with a specified position

GetByPos Get a value with a specified position

GetNameByPos Get the name of a value at a specified position

DeleteByName Delete a value with a specified name

DeleteByPos Delete a value with a specified position

DeleteAll Deletes all name value pairs

7.7.1 Properties

7.7.1.1 Info::Name

Returns or sets the name of the info section.

Syntax

objInfo.Name [= name]

Setting

Argument Type Description

name String name is a string containing the new name of the section

Remarks

The Name property is containing the name of the info section. It is unique or one
document.
It is displayed in the Data Info Panel as a title on to of the values.

The name of a newly created info class is assigned by the objDoc.InfoCreate()

191Object Reference

©2022 by Nanosurf, all rights reserved

method.

Example

Dim objInfo : Set objInfo = objDoc.InfoCreate("Test",Nothing)

MsgBox "Name is " & objInfo.Name

See also

Doc.InfoCreate, Pos Property

7.7.1.2 Info::Pos

Returns or sets the position of the info section in the document.

Syntax

objInfo.Pos [= pos]

Setting

Argument Type Description

pos short pos defines the position of the section in the list of a document

Remarks

Info class instances are stored in the parent document in a list. The Pos property is
containing the list position of a info section. Info sections are displayed in the Data Info
Panel in their list position starting by position zero.

If the value -1 is assigned to the Pos property the info class is placed at the end of the
list and the Pos property value is set accordingly.

Example

' move a info section to the end

objInfo.Pos = -1

See also

Doc.InfoCreate

192 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.7.2 Methods

7.7.2.1 Info::Count

Retrieves the number of values stored in this section

Syntax

count = objInfo.Count()

Arguments

none.

Result

Result Type Description

count short Returns the number of stored values

Remarks

The Count() method retrieves the number of values currently defined and displayed for
this information section. Returns zero if no values are defined.

Example

count = objInfo.Count()

See also

 Class Info, SetByName Method, SetByPos Method

7.7.2.2 Info::DeleteAll

Deletes all information of a section.

Syntax

ok = objInfo.DeleteAll()

Arguments

 none.

Result

193Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

ok boolean True if all information could be deleted

Remarks

The DeleteAll() method deletes all information entries of the info section.

Example

' delete all

ok = objInfo.DeleteAll()

See also

Class Info, DeleteByName Method, DeleteByPos Method

7.7.2.3 Info::DeleteByName

Deletes the information with a given name.

Syntax

ok = objInfo.DeleteByName(name)

Arguments

Argument Type Description

name string Name of the information to be deleted

Result

Result Type Description

ok boolean True if value for specified name could be deleted

Remarks

The DeleteByName() method deletes a information entry defined by its name.
The method searchs for the information in a none case sensitive manner.

Example

' delete an value from the roughness analysis result

Set objInfo = objDoc.InfoGetByName("Area Roughness")

194 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

If objApp.IsObj(objInfo) Then

 objInfo.DeleteByName "Sm"

End If

See also

Class Info, DeleteByPos Method, DeleteAll Method

7.7.2.4 Info::DeleteByPos

Deletes the information at a given position.

Syntax

ok = objInfo.DeleteByPos(pos)

Arguments

Argument Type Description

pos short Position of the information to be deleted

Result

Result Type Description

ok boolean True if value for specified position could be deleted

Remarks

The DeleteByPos() method deletes an information entry defined by its position.

Example

' delete first entry in a info section

ok = objInfo.DeleteByPos(0)

See also

Class Info, DeleteByName Method, DeleteAll Method

195Object Reference

©2022 by Nanosurf, all rights reserved

7.7.2.5 Info::GetByName

Returns the value of a information with a given name.

Syntax

value = objInfo.GetByName(name)

Arguments

Argument Type Description

name string Name of the value

Result

Result Type Description

value string Stored value for the named argument or an empty string if not
found

Remarks

The GetByName() method retrieves a value for a specified information defined by its
name.

The name is not case sensitive. If no information is found an empty string is returned

Example

' Create a new info section and store some value

Set objInfo = objDoc.InfoGetByName("Scan")

If objApp.IsObj(objInfo) Then

 MsgBox "Used scan speed was = " & objInfo.GetByName "Time/Line"

End If

See also

Class Info, GetByPos Method

196 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.7.2.6 Info::GetByPos

Returns the value of a information at a given position.

Syntax

value = objInfo.GetByPos(pos)

Arguments

Argument Type Description

pos short position of the value

Result

Result Type Description

value string Stored value at the specified position by pos. Is an empty string if
position is out of range.

Remarks

The GetByPos() method retrieves a value for a specified information defined by its
position.

If no information is found an empty string is returned

Example

' list all information for section "Scan"

Set objInfo = objDoc.InfoGetByName("Scan")

If objApp.IsObj(objInfo) Then

 For i = 0 To objInfo.Count() - 1

 MsgBox objInfo.GetNameByPos(i) & " = " & objInfo.GetByPos(i)

 Next

End If

See also

Class Info, GetByName Method

197Object Reference

©2022 by Nanosurf, all rights reserved

7.7.2.7 Info::GetDocument

Returns a IDispatch object to the parent Document class.

Syntax

objDoc = objInfo.GetDocument()

Arguments

 none.

Result

Result Type Description

objDoc Object A IDispatch object to the parent document class

Remarks

The GetDocument() method returns a IDispatch object to the Document class where
this class is stored.

Example

Set objDoc = objInfo.GetDocument()

if objApp.IsObj(objDoc) then

 MsgBox "objInfo is stored in : " & objDoc.Name

end if

See also

Class Info, Class Document

7.7.2.8 Info::GetNameByPos

Returns the name of a information at a given position.

Syntax

name = objInfo.GetNameByPos(pos)

Arguments

Argument Type Description

pos short position of the value

198 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result

Result Type Description

name string Name of value at the specified position by pos. Is an empty string if
position is out of range.

Remarks

The GetNameByPos() method retrieves the name for a specified information defined
by its position.

If no information is found an empty string is returned

Example

' list all information for section "Scan"

Set objInfo = objDoc.InfoGetByName("Scan")

If objApp.IsObj(objInfo) Then

 For i = 0 To objInfo.Count() - 1

 MsgBox objInfo.GetNameByPos(i) & " = " & objInfo.GetByPos(i)

 Next

End If

See also

Class Info

7.7.2.9 Info::SetByName

Sets the value of a information with a given name.

Syntax

ok = objInfo.SetByName(name, value)

Arguments

Argument Type Description

name string Name of the value

value string New value to be set

199Object Reference

©2022 by Nanosurf, all rights reserved

Result

Result Type Description

ok boolean True if value for specified name could be set

Remarks

The SetByName() method sets a new value for a specified information defined by its
name

If the name is not already defined a new entry in the list of information is created at the
end of the list. The name is not case sensitive but stored as it is defined.

Example

' Create a new info section and store some value

Set objInfo = objDoc.InfoCreate("My Analysis",-1,Nothing)

If objApp.IsObj(objInfo) Then

 objInfo.SetByName "Algo","SuperCalc"

 objInfo.SetByName "Result",1.2234

End If

See also

Class Info, GetByName Method, SetByPos Method

7.7.2.10 Info::SetByPos

Sets the value of a information at a given position

Syntax

ok = objInfo.SetByPos(pos, value)

Arguments

Argument Type Description

pos short position of the value

value string New value to be set

Result

Result Type Description

200 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

ok boolean True if value at specified position could be set

Remarks

The SetByPos() method sets a new value for a specified information defined by its
position. The position has to be positiv and lower than the value returned by Count()
otherwith the method return False.

It is recommended to use this function only to overwrite values predefined by
SetByName().

Example

' Create a new info section and store some value

Set objInfo = objDoc.InfoCreate("My Analysis",-1,Nothing)

If objApp.IsObj(objInfo) Then

 objInfo.SetByName "Algo","SuperCalc"

 objInfo.SetByName "Result",0

 ' overwrite Result value (pos = 1)

 objInfo.SetByPos(1,3.1415)

End If

See also

Class Info, GetByPos Method, SetByName Method

7.8 Litho

The Litho class handles the microscope's lithography subsystem.

A object pointer to this class is provided by the Application.Litho object property.

A lithography session is assembled offline by adding commands to the command list.
Call Start to start the session after completing the command list. Before assembling a
new lithography session the ClearCmdList method must be called.

Table of properties for Litho class:

Property name Purpose

OperationMode Set the lithography operating mode

PenUpMode Set the PenUp mode

201Object Reference

©2022 by Nanosurf, all rights reserved

Table of methods for general usage of Document class:

Method name Purpose

Start Start a lithography sequence

Stop Stop an ongoing lithography sequence

IsMoving Retrieve the information whether a lithography Cmd is in process or
not

IsWorking Retrieve the information whether a lithography is in process or not

ClearCmdList Clear the command list

AddCmd_MoveTip Add a MoveTip command to the CmdList

AddCmd_Wait Add a Wait command to the CmdList

AddCmd_SetPoint Add a SetPoint command to the CmdList

AddCmd_TipVoltage Add a TipVoltage command to the CmdList

AddCmd_VibratingAmpl Add a VibratingAmpl command to the CmdList

AddCmd_PenUp Add a PenUp command to the CmdList

AddCmd_PenDown Add a PenDown command to the CmdList

StartCapture Prepare a image capture if scanning or do it immediately

StopCapture Clear a prepared image capture

IsCapturing Retrieve the information whether a capture is prepared or not

StartFrameUp Start a single scan frame direction upward

StopFrameUp Stop a single scan frame

IsScanning Retrieve the information whether a scanning is in process or not

7.8.1 Properties

7.8.1.1 Litho::OperatingMode

Get or set the lithography operating mode.

Syntax

litho.OperatingMode [= mode]

Argument

Paramete
r

Type Description

mode LONG Defines the operating mode for lithography. See modes in the table below.

202 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

In order to do lithography you may select one of the following operating modes.

Table of lithography operation mode values and description:

State No. Name Description

0 LithoOpMode_User Undefined

1 LithoOpMode_STM For STM scan heads use this index

2 LithoOpMode_StaticAFM AFM only: Static deflection mode

3 LithoOpMode_DynamicAFM AFM only: Dynamic force mode

See also

None

7.8.1.2 Litho::InactivePenMode

Get or set the inactive pen mode.

Syntax

litho.InactivePenMode [= mode]

Argument

Paramete
r

Type Description

mode LONG Defines the inactive pen mode. See modes in the table below.

Remarks

Scan lines can be measured differently. This property defines this.

Table of inactive pen mode values and description:

State No. Name Description

0 InactivePenMode_LiftTip Lift tip while moving to the next start position.

1 InactivePenMode_ChangeO
pMode

Change back to the scan operating mode while moving
to the next start position.

See also

None

203Object Reference

©2022 by Nanosurf, all rights reserved

7.8.2 Methods

7.8.2.1 Litho::AddCmd_MoveTip

Move the tip from the current position to a destination coordinate.

Syntax

litho.AddCmd_MoveTip(x,y,z)

Argument

Paramete
r

Type Description

x double X-Axis component of the destination position. Unit in meter [m]

y double Y-Axis component of the destination position. Unit in meter [m]

z double Z-Axis component of the destination position. Unit in meter [m]

Remarks

This method adds a MoveTip command to the command list. The coordinate system of
the destination position is the scanner coordinate system. I.e. the position (0,0,0) is the
center position of the scanner.

Example

' move tip to x=10e-6m, y=10e-6m, z=0m

objLitho.AddCmd_MoveTip 10e-6, 10e-6, 0

' move tip to x=15e-6m, y=20e-6m, z=0m

objLitho.AddCmd_MoveTip 15e-6, 20e-6, 0

See also

Method ClearCmdList

7.8.2.2 Litho::AddCmd_PenDown

Add a PenDown command to the command list.

Syntax

litho.AddCmd_PenDown

Remarks

This method adds a PenDown command to the command list. The PenDown command
switches from the InactivePenMode to the lithography mode.

Example

' pen down

objLitho.AddCmd_PenDown

See also

Method ClearCmdList
Property InactivePenMode

204 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.8.2.3 Litho::AddCmd_PenUp

Add a PenUp command to the command list.

Syntax

litho.AddCmd_PenUp

Remarks

This method adds a PenUp command to the command list. The PenUp command
switches to the InactivePenMode. Use this command to start moving from one position
to another without performing lithography.

Example

' pen up

objLitho.AddCmd_PenUp

See also

Method ClearCmdList
Property InactivePenMode

7.8.2.4 Litho::AddCmd_SetPoint

Add a SetPoint command to the command list.

Syntax

litho.AddCmd_SetPoint(setpoint)

Argument

Paramete
r

Type Description

setpoint double Defines the reference value for the sensor signal from the scan head.

Remarks

This method adds a SetPoint command to the command list. This command changes
the Set point that is used in lithography mode.

The unit depends on the operating mode selected by property Litho.OperatingMode.

Op. mode Input Signal Unit

STM Tunneling
Current

Ampere

Static AFM Deflection Newton

Dynamic AFM Amplitude Percentage of resonance peak [0 .. 100%]

Example

' set setpoint 10uN (static AFM)

205Object Reference

©2022 by Nanosurf, all rights reserved

objLitho.AddCmd_SetPoint 10e-6 ' N

See also

Method ClearCmdList

7.8.2.5 Litho::AddCmd_TipSpeed

Add a TipSpeed command to the command list.

Syntax

litho.AddCmd_TipSpeed(speed)

Argument

Paramete
r

Type Description

speed double Tip speed. Unit in meter/second [m/s]

Remarks

This method adds a TipSpeed command to the command list. This command changes
the Tip speed that is used in lithography mode.

Example

objLitho.AddCmd_TipSpeed 4.0e-6 ' m/s

See also

Method ClearCmdList

7.8.2.6 Litho::AddCmd_TipVoltage

Add a TipVoltage command to the command list.

Syntax

litho.AddCmd_TipVoltage(voltage)

Argument

Paramete
r

Type Description

voltage double Defines the potential applied to the tip in voltage.

Valid range from -10V to +10V.

Remarks

This method adds a TipVoltage command to the command list. This command changes
the Tip voltage that is used in lithography mode.

Example

objLitho.AddCmd_TipVoltage 1.0 ' V

206 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Method ClearCmdList

7.8.2.7 Litho::AddCmd_VibratingAmpl

Add a VibratingAmpl command to the command list.

Syntax

litho.AddCmd_VibratingAmpl(voltage)

Argument

Paramete
r

Type Description

voltage double Defines the free vibrating amplitude in [V].

Remarks

This method adds a VibratingAmpl command to the command list. This command
changes the free vibration amplitude that is used in lithography mode.

This command is only affective if the operating mode "Dynamic force" is used.

Example

objLitho.AddCmd_VibratingAmpl 1.0 ' V

See also

Method ClearCmdList

7.8.2.8 Litho::AddCmd_Wait

Add a Wait command to the command list.

Syntax

litho.AddCmd_Wait(time)

Argument

Paramete
r

Type Description

time double Defines the wait time in seconds.

Remarks

This method adds a Wait command to the command list.

Example

objLitho.AddCmd_Wait 2.0 ' s

207Object Reference

©2022 by Nanosurf, all rights reserved

See also

Method ClearCmdList

7.8.2.9 Litho::ClearCmdList

Clear the command list.

Syntax

litho.ClearCmdList

Remarks

This method clears the command list.

Use this method before creating a new command list.

7.8.2.10 Litho::IsCapturing

Returns if a capture is pending or not.

Syntax

result = litho.IsCapturing

Result

Paramete
r

Type Description

result Boolean Returns True if a capture is pending

Remarks

This method is returning True if a capture is pending.

Example

If objLitho.IsCapturing Then

 objLitho.StopCapture

End If

See also

Method StartCapture, StopCapture

7.8.2.11 Litho::IsMoving

Returns if a tip move is pending or not.

Syntax

result = litho.IsMoving

208 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result

Paramete
r

Type Description

result Boolean Returns True if the tip is moving

Remarks

This method is returning True if a tip move is pending.

Example

If objLitho.IsMoving Then

 objLitho.Stop

End If

See also

Method Start, Stop

7.8.2.12 Litho::IsScanning

Returns if a scan is in process or not.

Syntax

result = litho.IsScanning

Result

Paramete
r

Type Description

result Boolean Returns True if imaging is in process

Remarks

This method is returning True if a scan is currently running.

Example

' measure image

objLitho.StartFrameUp

Do While objLitho.IsScanning : Loop

' copy image date

objLitho.StartCapture

See also

Method StartFrameUp

209Object Reference

©2022 by Nanosurf, all rights reserved

7.8.2.13 Litho::IsWorking

Returns if a lithography session is pending or not.

Syntax

result = litho.IsWorking

Result

Paramete
r

Type Description

result Boolean Returns True if a lithography session is pending

Remarks

This method is returning True if a lithography session is pending.

Example

If objLitho.IsWorking Then

 objLitho.Stop

End If

See also

Method Start, Stop

7.8.2.14 Litho::Start

Start the lithography session.

Syntax

litho.Start

Remarks

This method is starting the lithography session. The lithography session ends when the
last command has been executed.

The lithography session may be stopped at any time using the method Stop.

Example

' prepare litho

objLitho.ClearCmdList

objLihto.AddCmd_TipSpeed 10.0e-6

objLitho.AddCmd_MoveTip 1.0, 1.0, 0.0

' start litho

objLitho.Start

' do something else ...

' finish immediately

objLitho.Stop

210 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Method Stop

7.8.2.15 Litho::StartCapture

Create a new image document.

Syntax

litho.StartCapture

Remarks

This method copies the measured data to a new image document. If a scanning
process is running at the time StartCapture is called a new image document is created
each time a frame is measured.

A pending capture can be canceled with StopCapture. If a capture is pending read
method IsCapturing.

Example

' start imaging

objLitho.StartFrameUp

' prepare image copy

objLitho.StartCapture

' wait until copy is taken at end of frame

Do While objLitho.IsCapturing : Loop

See also

Method StopCapture, IsCapturing
Method Application.SaveDocument

7.8.2.16 Litho::StartFrameUp

Starts a single up frame image.

Syntax

litho.StartFrameUp

Remarks

This method is starting a single image starting from the bottom to the top. During the
scan process IsScanning is True and if StartCapturing is called during the frame a new
document is created after the scan frame is finished. At the end the tip is moved to the
center of the image.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning.

Prior to be able to scan a z-approach should be performed successfully.

211Object Reference

©2022 by Nanosurf, all rights reserved

Example

' prepare scan

objScan.ImageSize 2e-6,2e-6

objScan.Scantime = 0.7

' measure image

objLitho.StartFrameUp

Do While objLitho.IsScanning : Loop

' copy image date

objLitho.StartCapture

See also

Method IsScanning

7.8.2.17 Litho::Stop

Stop the lithography session.

Syntax

litho.Stop

Remarks

This method stops an ongoing lithography session immediately. The current executed
command will be aborted.

A possible pending capture flag is also aborted and no document is created.

Example

' start litho

objLitho.Start

' do something else ...

' finish immediately

objLitho.Stop

See also

Method Start

7.8.2.18 Litho::StopCapture

Cancel a pending capture

Syntax

litho.StopCapture

Remarks

This method cancel a pending capture. If a capture is pending read method IsCapturing.

Example

' start imaging

212 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objScan.StartFrameUp

' prepare image copy

objScan.StartCapture

' do something

If objScan.IsCapturing Then

 objScan.StopCapture

End If

See also

Method StartCapture, IsCapturing

7.8.2.19 Litho::StopFrameUp

Stops imaging immediately.

Syntax

litho.StopFrameUp

Remarks

This method stops any scan process immediately after the current scan line is finished.
The tip is moved to the center of the image.

A possible pending capture flag is also aborted and no document is created.

Example

' start scan

objLitho.StartFrameUp

' do something else ...

' finish immediately

objLitho.StopFrameUp

See also

Method StartFrameUp

7.9 OperatingMode

The OperatingMode class is responsible for all the different operation modes of a SPM
electronics.

For AFM many different operating modes are usable. They differ on how the cantilever
deflection signal is preprocessed and interpreted. Switching between modes is as easy
as write to the property OperatingMode.

Also different type of cantilevers can be used with different mechanical properties as
stiffness or resonance frequency. The property Cantilever handles the details about
them and adjust the internal microscope electronics accordingly.

Most of the mode dependent properties are automatically set. But if desired the Auto...

213Object Reference

©2022 by Nanosurf, all rights reserved

properties can be set to False and with mode specific properties manual settings can be
defined. Of course a read to any of these properties returns the automatically or manual
set values.

A object pointer to this class is provided by the Application.OperatingMode object property.

Table of general properties for OperatingMode class:

Property name Purpose

OperatingMode Defines the active operating mode of the sensor

Cantilever Defines the type of the mounted cantilever

Measurement Environment Defines the type of environment for the measurement

FreqSweepSetInfoCount Returns the number of available frequency sweep buffers

FreqSweepStart Returns the start frequency of a specified buffer index

FreqSweepEnd Returns the end frequency of a specified buffer index

FreqSweepStep Returns the step frequency of a specified buffer index

Table of general methods for OperatingMode class:

Method name Purpose

GetFreqSweepLine /

GetFreqSweepLine2

Retrieve the data of a freq. sweep line. Returns value as String or
Variant

GetFreqSweepLineEx /

GetFreqSweepLine2Ex

Retrieve the data of a freq. sweep line of a specified buffer index.
Returns value as String or Variant

Table of "Dynamic force"-Mode properties and methods:

Property name Purpose

VibratingAmpl Defines the amplitude of the cantilever vibration

ReferenceAmpl Returns the excitation amplitude used to reach the vibration amplitude

VibratingFreq Defines the excitation frequency of the cantilever

AutoVibratingFreq Enable automatically adjustment of excitation frequency

ShowFreqSearchChart Shows or hides the result of excitation frequency search

Method name

SearchVibratingFreq Triggers the excitation frequency search manually

IsFreqSearchRunning Flags if a frequency search is active

214 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

FreqSearchResult Returns the status of the frequency search

CaptureFreqSearchChart Create a image document of the frequency search bode plot chart

Table of "Phase Contrast"-Mode properties and methods:

Property name Purpose

VibratingAmpl Defines the amplitude of the cantilever vibration

VibratingFreq Defines the excitation frequency of the cantilever

AutoVibratingFreq Enable automatically adjustment of excitation frequency

ReferencePhase Defines the phase reference for the phase chart

AutoReferencePhase Enable automatically adjustment of the reference phase

ShowFreqSearchChart Shows or hides the result of excitation frequency search

Method name

SearchVibratingFreq Triggers the excitation frequency search manually

IsFreqSearchRunning Flags if a frequency search is active

FreqSearchResult Returns the status of the frequency search

CaptureFreqSearchChart Create a image document of the frequency search bode plot chart

SearchReferencePhase Triggers the reference phase search manually

IsPhaseSearchRunning Flags if a reference phase search is active

Table of "Force Modulation"-Mode properties and methods:

Property name Purpose

ForceModAmpl Defines the amplitude of the cantilever excitation

ForceModFreq Defines the frequency of the cantilever excitation

Method name

SearchVibratingFreq Triggers the excitation frequency search manually

IsFreqSearchRunning Flags if a frequency search is active

FreqSearchResult Returns the status of the frequency search

CaptureFreqSearchChart Create a image document of the frequency search bode plot chart

Table of advanced properties for "Dynamic force ", "Phase Contrast" and "Force
Modulation"-Mode:

215Object Reference

©2022 by Nanosurf, all rights reserved

Property name Purpose

FreqSearchStart Defines the lower frequency of the vibrating frequency search range

FreqSearchEnd Defines the upper frequency of the vibrating frequency search range

FreqSearchStep Defines the step resolution of the vibrating frequency search

AutoFreqSearchRange Flags if the frequency search area is automatically set

PeakAmplReduction Defines the shift of operating frequency point from peak maximum

PeakUpperSideBand Flags if the shift is to the upper or lower side of the peak

7.9.1 Properties

7.9.1.1 OperatingMode::AutoFreqSearchRange

Returns or set a flag to define if automatic search range calculation is active or not.

Syntax

opmode.AutoFreqSearchRange [= flag]

Setting

Argument Type Description

flag Boolean Set to True if automatic calculation of start, end and step frequency
values is enabled.

Remarks

This property defines if the software is calculation the frequency search rage
automatically or not. If in auto mode the frequency range is calculated from the active
cantilever's typical resonance value. Therefore accurate cantilever selection with
property Cantilever and it definition is important.

The settings of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation".

The resonance peak search can be executed manually by method
SearchVibratingFreq.

Example

' execute approach with fully automatically adjustment

' activate auto modes and Phase Contrast Mode

216 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objOpMode.AutoFreqSearchRange = True

objOpMode.AutoVibratingFreq = True

objOpMode.AutoReferencePhase = True

objOpMode.OpertingMode = 4

objOpMode.Cantilever = 2

objOpMode.VibratingAmpl = 0.05 'V

objZCtrl.SetPoint = 50 '%

objAppr.StartApproach

See also

Property OperatingMode, FreqSearchStart, FreqSearchEnd, FreqSearchStep
Method SearchVibratingFreq

7.9.1.2 OperatingMode::AutoReferencePhase

Returns or set a flag to define if automatic reference phase calibration is active or not.

Syntax

opmode.AutoRefeencePhase [= flag]

Setting

Argument Type Description

flag Boolean Set to True if automatic recalibration of reference phase is enabled.

Remarks

This property defines if the property ReferencePhase is set automatically or not. If in
auto mode after an approach a recalibration of the phase measurement is executed
and the reference phase is set to the new value.

The setting of this property is used in the operating mode "Phase Contrast".

The calibration of the reference phase can also be started manually by method
SearchReferencePhase.

Example

' see example at method SearchReferencePhase

See also

Property OperatingMode, ReferencePhase
Method SearchVibratingFreq

217Object Reference

©2022 by Nanosurf, all rights reserved

7.9.1.3 OperatingMode::AutoVibratingFreq

Returns or set a flag to define if automatic resonance frequency detection is active or
not.

Syntax

opmode.AutoVibratingFreq [= flag]

Setting

Argument Type Description

flag Boolean Set to True if automatic set of excitation frequency is enabled.

Remarks

This property defines if the property VibratingFreq is set automatically or not. If in auto
mode prior to an approach, operating mode change or cantilever exchange a
resonance frequency search is executed and the vibration frequency is set to the found
peak.

The settings of this property is used in the operating modes "Dynamic force" and
"Phase Contrast".

The resonance peak search can also be executed manually by method
SearchVibratingFreq.

Example

' see example at method SearchVibratingFreq

See also

Property OperatingMode, VibratingFreq
Method SearchVibratingFreq

7.9.1.4 OperatingMode::ForceModAmpl

Returns or set the excitation amplitude.

Syntax

opmode.ForceModAmpl [= ampl]

218 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

ampl double Defines the excitation amplitude of the cantilever in [V].

Remarks

This property sets the amplitude of the excitation signal of the cantilever. The excitation
frequency is defined by ForceModFreq.

The setting of this property is used in the operating mode "Force Modulation".

See also

Property OperatingMode, ForceModFreq

7.9.1.5 OperatingMode::ForceModFreq

Returns or set the excitation frequency.

Syntax

opmode.ForceModFreq [= freq]

Setting

Argument Type Description

freq double Defines the excitation frequency of the cantilever in [Hz].

Remarks

This property sets the frequency of the excitation signal of the cantilever. The excitation
amplitude is defined by ForceModAmpl.

The setting of this property is used in the operating mode "Force Modulation".

See also

Property OperatingMode, ForceModAmpl

219Object Reference

©2022 by Nanosurf, all rights reserved

7.9.1.6 OperatingMode::FreqSearchEnd

Returns or set the end frequency of the frequency peak search range.

Syntax

opmode.FreqSearchEnd [= freq]

Setting

Argument Type Description

freq double Defines the end frequency of the search range in [Hertz].

Remarks

This property sets the end frequency of the search range for a frequency resonance
peak. This frequency has to be higher than the FreqSearchEnd value. If
AutoFreqSearchRange is enabled the start and end point of the sweep is
automatically calculated from the cantilever's properties.

The setting of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation".

See also

Property OperatingMode, FreqSearchStart, FreqSearchStep, AutoFreqSearchRange
Method SearchVibratingFreq

7.9.1.7 OperatingMode::FreqSearchStart

Returns or set the start frequency of the frequency peak search range.

Syntax

opmode.FreqSearchStart [= freq]

Setting

Argument Type Description

freq double Defines the start frequency of the search range in [Hertz].

Remarks

This property sets the start frequency of the search range for a frequency resonance
peak. This frequency has to be lower than the FreqSearchEnd value. If

220 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

AutoFreqSearchRange is enabled the start and end point of the sweep is
automatically calculated from the cantilever's properties.

The setting of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation".

See also

Property OperatingMode, FreqSearchEnd, FreqSearchStep, AutoFreqSearchRange
Method SearchVibratingFreq

7.9.1.8 OperatingMode::FreqSearchStep

Returns or set the frequency increment of the frequency peak search range.

Syntax

opmode.FreqSearchStep [= increment]

Setting

Argument Type Description

increment double Defines the increment frequency in [Hertz].

Remarks

This property sets the frequency step used by the search for a frequency resonance
peak. The frequency step is used for the coarse frequency search only. Increasing the
step with a faster sweep is performed but for high Q-Factor cantilever this can end up
with bad detection of the peak. The number of amplitude and phase measurements per
sweep can be calculated:

Datapoints = (FreqSearchEnd - FreqSearchStart) / FreqSearchStep + 1

The setting of this property is used in the operating modes "Dynamic force", "Phase
Contrast" and "Force Modulation".

See also

Property OperatingMode, FreqSearchStart, FreqSearchEnd, AutoFreqSearchRange
Method SearchVibratingFreq

221Object Reference

©2022 by Nanosurf, all rights reserved

7.9.1.13 OperatingMode::LeverExcitationMode

Defines the configuration of the cantilever tip signal.

Syntax

mode = opmode.LeverExcitationMode

Result

Argument Type Description

mode long Defines the mode of operation for the cantilever shaking piezo

Remarks

This property defines the configuration of the excitation signal to the shaking piezo of
the cantilever.
The excitation can be applied internally by the controller or externally by a user defined
source.

Table of available mode values:

State
No.

Name Description

0 LeverMode_InternalSour
ce

Excitation signal to the shaking piezo is driven by
the internal oscillator of the controller.

1 LeverMode_ExternalSour
ce

Excitation signal to the shaking piezo is driven by a
external source connected to the easyScan 2
Signal Access Module Advanced BNC "Excitation
input".

See also

None

Version info

 Software v1.5.1.1 or later

7.9.1.14 OperatingMode::OperatingMode

Returns or set the sensor operating mode.

Syntax

222 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

opmode.OperatingMode [= mode]

Setting

Argument Type Description

mode long Defines the mode of operating of the sensor system. See valid
mode index in the table below.

Remarks

For AFM many different operating modes are usable. They differ on how the cantilever
deflection signal is preprocessed and interpreted. This property defines them.

Some modes has their special settings properties. Many of them are automatically set.
But if desired the Auto... properties can be set to False and with mode specific
properties manual settings can be defined.

Attention: If a operating mode is changed a change of cantilever is also necessary for
proper operation. Set Cantilever accordingly.
For more information please refer to the Nanosurf Software Reference Manual.

Table of operating mode values and description:

State
No.

Name Description

0 OpMode_User Undefined

1 OpMode_STM For STM scan heads use this index

2 OpMode_StaticAFM AFM only: Static deflection mode

3 OpMode_DynamicAFM AFM only: Dynamic force mode

4 OpMode_PhaseContrast AFM only: Phase contrast mode

5 OpMode_ForceModulation AFM only: Force modulation mode

6 OpMode_SpreadingResist
ance

AFM only: Spreading resistance mode

7 OpMode_ConstPhase AFM only: Constant phase mode

8 OpMode_A_Probe_dF A probe only: Frequency modulation mode

9 OpMode_Lateral Force AFM only: Lateral force mode

Example

' enable dynamic AFM and use NCLR Lever

objOpMode.OperatingMode = 3

objOpMode.Cantilever = 1

223Object Reference

©2022 by Nanosurf, all rights reserved

See also

Property Cantilever.

7.9.1.15 OperatingMode::PeakAmplReduction

Returns or set the amplitude reduction from the resonance peak at auto peak search.

Syntax

opmode.PeakAmplReduction [= value]

Setting

Argument Type Description

value double Defines the reduction of the amplitude from resonance peak
maximum in [%].

Remarks

This property sets the amplitude reduction value used at automatically resonance peak
searches. The actual vibrating frequency is set not to the resonance peak of the
cantilever but at either side of the peak with a small reduction of the amplitude. The
amount of this reduction is defined with this property. To which side of the resonance
peak the frequency shift is done set property PeakUpperSideBand.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

See also

Property OperatingMode, PeakUpperSideBand

7.9.1.16 OperatingMode::PeakUpperSideBand

Returns or set the to which side of the resonance peak the frequency should be shifted.

Syntax

opmode.PeakUpperSideBand [= flag]

224 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

flag Boolean Set to True if the frequency is shifted to higher frequency. False
shifts the vibrating frequency to lower values.

Remarks

This property sets the amplitude reduction value used at automatically resonance peak
searches. The actual vibrating frequency is set not to the resonance peak of the
cantilever but at either side of the peak with a small reduction of the amplitude. To
which side of the resonance peak the frequency shift is done set this property.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

See also

Property OperatingMode, PeakAmplReduction

7.9.1.17 OperatingMode::ReferencePhase

Returns or set the reference phase for phase measurement.

Syntax

opmode.ReferencePhase [= phase]

Setting

Argument Type Description

phase double Defines the reference phase in [radian].

Remarks

This property sets the reference phase for the phase measurement of the cantilever
returning vibrating signal. If AutoReferencePhase is set the reference phase is set
automatically after approach. The microscope electronics is measuring the difference
between the reference phase signal and the sensor return signal. Best performance of
this measurement is done at 90° phase difference between these signals.
Readjusment of the phase can be triggered with SearchReferencPhase.

The setting of this property is used in the operating mode "Phase Contrast".

225Object Reference

©2022 by Nanosurf, all rights reserved

Example

' set the reference phase to 30°

objOpMode.ReferencePhase = 30.0 / 180.0 * 3.1415

See also

Property OperatingMode, AutoReferencePhase
Method SearchReferencePhase

7.9.1.18 OperatingMode::ShowFreqSearchChart

Returns or set a flag to define if bode plot charts as a result of frequency peak search
are shown or not.

Syntax

opmode.ShowFreqSearchChart [= flag]

Setting

Argument Type Description

flag Boolean Set to True if charts should be displayed.

Remarks

This property defines if all bode plot charts as a result of a frequency peak search is
displayed in new image documents or not.

Frequency peak searches can be performed automatically if AutoVibrartingFreq is
enabled or if SearchVibratingFreq is called.
To display the chart only if desired call CaptureFreqSearchChart.

Example

' see example at method SearchVibratingFreq

See also

Property AutoVibratingFreq
Method SearchVibratingFreq, CaptureFreqSearchChart

226 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.9.1.19 OperatingMode::TipSignalMode

Defines the configuration of the cantilever tip signal.

Syntax

mode = opmode.TipSignalMode

Result

Argument Type Description

mode long Defines the mode of operation for tip signal

Remarks

This property defines the configuration of the tip connection.
The tip signal can be wired differently to user in/outputs or internal signals of the
controller.

Table of available mode values:

State
No.

Name Description

0 TipSig_CurrentSensInpu
t

Tip signal is configured as current measurement
input.

1 TipSig_VoltageOutput Tip signal is configured as a voltage output

2 TipSig_DirectFeedtroug
h

Tip signal is connected directly to the easyScan 2 Signal
Access Modul Advanced BNC Input "Tip Signal"

See also

Property objCtrl.TipVoltage

Version info

 Software v1.5.1.1 or later

7.9.1.20 OperatingMode::VibratingAmpl

Returns or set the free vibrating amplitude.

Syntax

opmode.VibratingAmpl [= ampl]

227Object Reference

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

ampl double Defines the free vibrating amplitude in [V].

Remarks

This property sets the free amplitude of the cantilever. The excitation of the cantilever is
set so that the returning sensor signal is at this value. During the adjustment of the
amplitude the cantilever is withdrawn from the surface. The excitation frequency is
defined by VibratingFreq.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

Example

' enable dynamic AFM and set amplitude to 50mV

objOpMode.OperatingMode = 3

objOpMode.VibratingAmpl = 0.05 '[V]

See also

Property OperatingMode, VibratingFreq

7.9.1.22 OperatingMode::VibratingFreq

Returns or set the vibrating frequency.

Syntax

opmode.VibratingFreq [= freq]

Setting

Argument Type Description

freq double Defines the vibrating frequency in [Hertz].

Remarks

This property sets the excitation frequency of the cantilever. If AutoVibratingFreq is
set the frequency is set automatically to the resonance peak of the cantilever. The
amplitude if the vibration is defined by VibratingAmpl.

The setting of this property is used in the operating modes "Dynamic force" and "Phase
Contrast".

228 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Example

' read the resonance frequency of the cantilever

freq = objOpMode.VibratingFreq

See also

Property OperatingMode, AutoVibratingFreq, VibratingAmpl,

7.9.2 Methods

7.9.2.1 OperatingMode::CaptureFreqSearchChart

Creates an image document with the last frequency search bode plot data.

Syntax

opmode.CaptureFreqSearchChart

Remarks

This method creates an new image document with the last executed frequency search
result.

Example

' define search range

objOpMode.FreqSearchStart = 100000 'Hz

objOpMode.FreqSearchEnd = 200000 'Hz

objOpMode.ShowFreqSearchChart = False

objOpMode.SearchVibratingFreq

Do While objOpMode.IsFreqSearchRunning : Loop

objOpMode.CaptureFreqSearchChart

See also

Method SearchVibratingFreq, IsFreqSearchRunning
 Method Application.SaveDocument

7.9.2.2 OperatingMode::FreqSearchResult

Returns or set the sensor operating mode.

Syntax

status = opmode.FreqSearchResult

229Object Reference

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

status long Returns a status number which informs about the last frequency
search result. See possible status numbers in the table below.

Remarks

This method returns the status of the last executed frequency search. Either called
automatically at approach or manually by SearchVibratingFreq.

Table of possible status results:

Status
No.

Name Description

0 FreqSweepStat_Peak
NotFound

A frequency peak could not be found

1 FreqSweepStat_Peak
Found

Frequency peak successfully found. Read VibratingFreq
for value.

2 FreqSweepStat_Runn
ing

Frequency search is in process.

Example

' see example at method SearchVibratingFreq

See also

Property AutoVibratingFreq
Method SearchVibratingFreq, IsFreqSearchRunning

7.9.2.3 OperatingMode::GetFreqSweepLine / GetFreqSweepLine2

Returns a string of data values of a stored frequency data line.

Syntax

str_array = objData.GetFreqSweepLine(group, channel, line,filter,conversion)
variant_array = objData.GetFreqSweepLine2(group, channel, line,filter,conversion)

Argument

230 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Paramete
r

Type Description

group short desired group index

channel short desired channel index

line short desired line index

filter short index of mathematical filter to be used

conversion short index of conversion type of results

Result

Result Type Description

str_array String Character string with comma separated values of all the values of
the data line

variant_arr
ay

double
array

numerical array of values of all the values of the data line

Remarks

This method returns a string of data values of a data line stored in the container. The
signal will be extracted and the data values are processed with a filters as available for
the user in the "Chart Toolbar". The result is in a comma separated string in different
numerical formats.

The argument line is the number of the data line to extract. 0 is the bottom line and the
value property Lines -1 the top most one.

The argument filter defines the data processing algorithm to be used.

Table of filter index:

Filter
No.

Filter Name Description

0 FilterRaw No data processing

1 FilterMean The mean value is subtracted

2 FilterPlane The background plane is subtracted

3 FilterDerive The derivative of the signal is calculated

4 FilterParabola A second order fit is subtracted

5 FilterPolynominal A forth order fill is subtracted

For more detailed description of the filter algorithm please refer to the Nanosurf
Software Reference Manual.

231Object Reference

©2022 by Nanosurf, all rights reserved

The argument conversion defines the format of the resulting string array.

Table of conversion index:

Conversio
n No.

Conversion Name Description

0 ConversionBinary16 Output as signed 16bit data values

1 ConversionPhysical Output as floating point values in physical base unit

ConversionBinary32 Output as signed 32bit data values

See also

Lines Property

7.9.2.5 OperatingMode::IsFreqSearchRunning

Returns a flag if frequency peak search is running or not.

Syntax

flag = opmode.IsFreqSearchRunning

Result

Argument Type Description

flag Boolean Returns True if frequency search is currently executing otherwise
False.

Remarks

This method returns True if a frequency sweep is running. A sweep can be started
automatically by an approach or method SearchVibratingFreq.

Example

' see example at method SearchVibratingFreq

See also

Property AutoVibratingFreq
Method SearchVibratingFreq

232 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.9.2.6 OperatingMode::IsPhaseSearchRunning

Returns a flag if phase calibration is running or not.

Syntax

flag = opmode.IsPhaseSearchRunning

Result

Argument Type Description

flag Boolean Returns True if phase calibration is currently executing otherwise
False.

Remarks

This method returns True if a phase calibration is running. A calibration can be started
automatically after an approach or method SearchReferencePhase.

This method is used in the operating mode "Phase Contrast".

Example

' see example at method SearchReferencePhase

See also

Property AutoReferencePhase, ReferencePhase
Method SearchReferencePhase

7.9.2.7 OperatingMode::SearchReferencePhase

Calibrates the reference phase to the actual input phase..

Syntax

opmode.SearchReferencePhase

Remarks

This method calibrates the reference phase according to the actual sensor signal
phase that best sensitivity is reached. Best sensitivity is reached when the reference
phase and the input phase are 90° phase shifted.

During the calibration method IsPhaseSearchRunning returns True. The result of the
calibration can be read afterwards from property ReferencePhase.

233Object Reference

©2022 by Nanosurf, all rights reserved

Example

' recalibrate phase

objOpMode.SearchReferencePhase

Do While objOpMode.IsPhaseSearchRunning : Loop

MsgBox "New reference phase is " & (objOpMode.ReferencePhase / 3.1415 * 180.0) &

"°"

See also

Property ReferencePhase, AutoReferencePhase
Method IsPhaseSearchRunning

7.9.2.8 OperatingMode::SearchVibratingFreq

Searches the resonance peak of the cantilever and set the vibrating frequency.

Syntax

opmode.SearchVibratingFreq

Remarks

This method searches the resonance peak of a cantilever. It performs a excitation
frequency sweep in a certain frequency range and detects frequency with amplitude
maximum. In a second frequency sweep a more close observation of the found
resonance frequency is performed and the property VibratingFreq is set according to
the Peak... property.

During the search method IsFreqSearchRunning returns True. If a search was
successful or not is returned by FreqSearchResult. The result of the frequency
sweep the bode plot can be saved with CaptureFreqSearchChart or automatically if
ShowFreqSearchChart is enabled.

A set of properties is defining the resonance search:

Property name Purpose

FreqSearchStart Defines the lower frequency of the vibrating frequency search
range

FreqSearchEnd Defines the upper frequency of the vibrating frequency
search range

FreqSearchStep Defines the step resolution of the vibrating frequency search

AutoFreqSearchRange Flags if the frequency search area is automatically calculated

234 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

PeakAmplReduction Defines the shift of operating frequency point from peak maximum

PeakUpperSideBand Flags if the shift is to the upper or lower side of the peak

Example

' manual search of resonance peak

' define search range

objOpMode.FreqSearchStart = 150000 'Hz

objOpMode.FreqSearchEnd = 250000 'Hz

' execute search

objOpMode.ShowFreqSearchChart = True

objOpMode.SearchVibratingFreq

Do While objOpMode.IsFreqSearchRunning : Loop

' check if peak found and report result

If objOpMode.FreqSearchResult = 1 Then

 MsgBox "Resonance found at " & objOpMode.VibratingFreq & "Hz"

Else

 MsgBox "No resonance peak found"

End If

See also

Property VibratingFreq, ShowFreqSearchChart
Method IsFreqSearchRunning, FreqSearchResult

7.10 Scan

The Scan class handles the microscope's imaging subsystem.

Imaging is done by a line by line scanning process over the surface. During the scanning
the z height information and other supplementary signals are recorded at data points
along each scan line. These data points are stored in N*M Matrixes and are displayed on
screen as charts.

A set of properties are defining the physical imaged area, the recorded signals and the
number of data points. See the property table below. For more information about the
physical reference coordinate system please refer to the Nanosurf Software Reference
Manual.

A single image frame is measured by calling StartFrameUp, a continuous scan by
calling Start. Is a complete image frame measured the stored results can by copied in a
image document by method StartCapture. If a script is interested in numeric values of a
scan line in the matrix use GetLine method.

A object pointer to this class is provided by the Application.Scan object property.

235Object Reference

©2022 by Nanosurf, all rights reserved

Table of properties for Scan class:

Property name Purpose

AutoCapture Get or set the flag if auto capture is active

AutoDeleteBuffer Get or set the auto delete buffer function

AutoSlopeCorrection Enable or disable the auto slope correction function

ImageWidth Physical width of a image frame

ImageHeight Physical height of a image frame

Points Number of data points measured per scan line

Lines Number of scan lines per image frame

Scantime Speed of scan movement per scan line

Rotation Z-Rotation of the image frame regarding the physical coordinate system

SlopeX X-Axis rotation of the image plane regarding the physical coordinate
system

SlopeY Y-Axis rotation of the image plane regarding the physical coordinate
system

CenterPosX Offset of the image center regarding the X-Axis of the physical coordinate
system

CenterPosY Offset of the image center regarding the Y-Axis of the physical coordinate
system

Overscan Relation between the physical scan line length and the image width

ZPlane Offset of the image plane regarding the Z-Axis of the physical coordinate
system

Scanmode Mode of scanning if in scan was started with method Start

Measuremode Mode of scan line measurement

LineMode Mode how a scan line is scanned

LineScanning Mode how a scan line is scanned

RelTipPos Offset of tip in ConstHeight LineMode

SyncOutMode Returns or selects the mode of the synchronization output

FirstScanlineRep Returns or set the number of repetitions of the first scan line per frame

ContourEnabled Return or set ContourEnabled

AutoReadjustProbeEnabl
ed

Return or set AutoReadjustProbeEnabled

ReadjustLiftHeight Return or set ReadjustLiftHeight

SndScanDynamicAmplitu
de

Return or set SndScanDynamicAmplitude

236 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

SndScanDynamicAmplitu
deEnabled

Return or set SndScanDynamicAmplitudeEnabled

SndScanForceModulation
Amplitude

Return or set SndScanForceModulationAmplitude

SndScanForceModulation
AmplitudeEnabled

Return or set SndScanForceModulationAmplitudeEnabled

SndScanEnableDarkMod
e

Return or set SndScanEnableDarkMode

SndScanEnableKPFM Return or set SndScanEnableKPFM

SndScanSndLockInExcita
tionAmplitude

Return or set SndScanSndLockInExcitationAmplitude

SndScanSndLockInExcita
tionAmplitudeEnabled

Return or set SndScanSndLockInExcitationAmplitudeEnabled

PrescanSpeedup Return or set the speedup of the Prescan scan mode

Table of methods for Scan class:

Method name Purpose

DeleteBuffer Deletes the content of the chart buffer

ShowWindow Controls the visibility of the imaging window

Start Starts image scanning.

Stop Stops image scanning

Pause Pauses the scanning

StartFrameUp Start a single scan frame direction upward

StartFrameDown Start a single scan frame direction downward

StartPrescan Start a single QuickPrescan (direction upward)

StopPrescan Stops a running QuickPrescan

Currentline Get number of the current measured scan line

IsScanning Retrieve the information whether a scanning is in process or not

IsScanningPrescan Retrieve the information whether a QuickPrescan is in process or not

IsPaused Return true if the current imaging process is paused

StartCapture Prepare a image capture if scanning or do it immediately

StopCapture Clear a prepared image capture

IsCapturing Retrieve the information whether a capture is prepared or not

StartSlopeCorrection Starts the slope correction

237Object Reference

©2022 by Nanosurf, all rights reserved

IsSlopeCorrectionRunning Returns if a slope correction process is running or not

GetLine / GetLine2 Retrieve the data point values of a scan line. Returns the value as string or
variant.

ImageSize Set the physical size of a image

GetFrameDir Retrieve the current scan direction

7.10.1 Properties

7.10.1.1 Scan::AutoCapture

Returns or set a flag if AutoCapture is activated.

Syntax

scan.AutoCapture [= flag]

Setting

Argument Type Description

flag boolean Set to True AutoCapture is activated and set to False AutoCapture
is deactivated.

Remarks

none

See also

7.10.1.2 Scan::AutoDeleteBuffer

Get or set the auto delete buffer function.

Syntax

scan.AutoDeleteBuffer [= state]

Setting

Argument Type Description

238 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

state bool If set to TRUE the function is enabled. If set to FALSE the function
is disabled

Remarks

If the AutoDeleteBuffer function is active the chart buffer will be automatically delete
every time the Scan restarts.

For more information about this function please refer to the Nanosurf Software
Reference Manual.

See also

Method DeleteBuffer

7.10.1.3 Scan::AutoReadjustProbeEnabled

Returns or set the AutoReadjustProbeEnabled.

Syntax

scan.AutoreadjustProbeEnabled [= state]

Setting

Argument Type Description

state bool Defines the AutoReadjustProbeEnabled state

Remarks

See also

Property ReadjustLiftHeight

Version info

 Software v3.6.0.0 or later

7.10.1.4 Scan::AutoSlopeCorrection

Enable or disable the auto slope correction function.

Syntax

scan.AutoSlopeCorrection [= state]

239Object Reference

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

state bool If set to TRUE the function is enabled. If set to FALSE the function
is disabled

Remarks

If the AutoSlopeCorrection function is active the X/Y slopes will be corrected after every
approach.

For more information about this function please refer to the Nanosurf Software
Reference Manual.

See also

Property

7.10.1.5 Scan::CenterPosX

Returns or set the image X-Axis center position.

Syntax

scan.CenterPosX [= pos]

Setting

Argument Type Description

pos double Defines the X-Axis position of the image center in meter

Remarks

The image can be place anywhere inside the maximal scan area defined by the scan
head. To place a image not in the center of the scan area a displacement vector
composed of CenterPosX and CenterPosY can be used. The maximal X-Axis
displacement can be calculated by (MaxScanrange - ImageWidth / 2) if Overscan
and Rotation are both zero.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

' place a 30um image off center to (20um,-50um)

240 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

objScan.ImageSize 30e-6,30e-6

objScan.CenterPosX = 20e-6

objScan.CenterPosY = -50e-6

See also

Property CenterPosY, ImageWidth, Overscan, Rotation

7.10.1.6 Scan::CenterPosY

Returns or set the image Y-Axis center position.

Syntax

scan.CenterPosY [= pos]

Setting

Argument Type Description

pos double Defines the Y-Axis position of the image center in meter

Remarks

The image can be place anywhere inside the maximal scan area defined by the scan
head. To place a image not in the center of the scan area a displacement vector
composed of CenterPosX and CenterPosY can be used. The maximal Y-Axis
displacement can be calculated by (MaxScanrange - ImageHeight / 2) if Overscan
and Rotation are both zero.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

' place a 30um image off center to (20um,-50um)

objScan.ImageSize 30e-6,30e-6

objScan.CenterPosX = 20e-6

objScan.CenterPosY = -50e-6

See also

Property CenterPosX, ImageHeight, Overscan, Rotation

241Object Reference

©2022 by Nanosurf, all rights reserved

7.10.1.7 Scan::ContourEnabled

Returns or set the ContourEnabled.

Syntax

scan.ContourEnabled [= state]

Setting

Argument Type Description

state bool Defines the ContourEnabled state

Remarks

Version info

 Software v3.6.0.0 or later

7.10.1.8 Scan::FirstScanlineRep

Returns or set the number of repetitions of the first scan line per frame.

Syntax

scan.FirstScanlineRep [= val]

Setting

Argument Type Description

val long Defines the number of repetitions of first scan line at the beginning
of a image frame

Remarks

At a start of a new image measurement it can happen that the scan head signals are
not stable after the movement to the first scan line to start an image frame. Therefore
the program measure the first scaned line twice to get a nice first scan line.
In some cases this repetition of the first scan line is not of interest and should be
switched off. in other cases on repetition is not enough to stabilize the signal and more
repetitions are desired.

This property is controlling this repetitions. A Zero value means no repetition, a value of
one means one repetition and so on.

242 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Example

' prepare a single profile

objImageSize 1e-6,0 ' 1um length

objScan.Points = 1024

objScan.Lines = 1

objScan.FirstScanlineRep = 0

' measure profile

objScan.StartFrameUp

Do While objScan.IsScanning : Loop

' read profile

scanline = objScan.GetLine(0,1,0,2,1)

See also

Property Lines

Version info

 Software v1.4.0 or later

7.10.1.9 Scan::ImageHeight

Returns or set the physical width of a image frame.

Syntax

scan.ImageHeight [= height]

Setting

Argument Type Description

height double Defines the height of a image frame in meter

Remarks

The physical height of a image frame is defined by this property. The number of scan
lines per image frame is defined in property Lines. A ImageHeight of zero is allowed
and means that all scan lines are measured at the same position.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.
Proper scan head calibration is necessary to provide accurate image information.

Example

' define a 20um image frame size

243Object Reference

©2022 by Nanosurf, all rights reserved

objScan.ImageWidth = 20e-6

objScan.ImageHeight = 20e-6

See also

Property ImageWidth
Method ImageSize

7.10.1.10 Scan::ImageWidth

Returns or set the physical width of a image frame.

Syntax

scan.ImageWidth [= width]

Setting

Argument Type Description

width double Defines the width of a image frame in meter

Remarks

The physical length of each scan line is defined by this property. The number of data
points per scan line defined in property Points are spread continuously along the width
of a scan line. The time to measure along a scan line is defined in the property
Scantime. A width of zero is allowed and means that all data points are measured at
the same position.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.
Proper scan head calibration is necessary to provide accurate image information.

Example

' define a 20um image frame size

objScan.ImageWidth = 20e-6

objScan.ImageHeight = 20e-6

See also

Property ImageHeight, Points, Scantime
Method ImageSize

244 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.10.1.11 Scan::LineMode

Returns or set the mode a scan line is scanned.

Syntax

scan.LineMode [= mode]

Setting

Argument Type Description

mode long Defines the how a scan line is scanned. See modes in the table
below.

Remarks

Scan lines can be measured differently. This property defines this.

Table of scan line mode values and description:

State
No.

Name Description

0 LineMode_Standard The tip is scanned over the surface with Z-Controller
settings and topography information is recorded

1 LineMode_ConstHeight The tip hovers above the surface at a defined distance.
The distance is defined by scan.RelTipPos property.
Topography height is only recorded at the beginning and
end of each scan line.

See also

Property RelTipPos

Version info

 Available since Software v1.5.0 (No longer available v3.6 and up)

7.10.1.12 Scan::Lines

Returns or set the scan lines per image frame.

Syntax

245Object Reference

©2022 by Nanosurf, all rights reserved

scan.Lines [= lines]

Setting

Argument Type Description

lines long Defines the number of scan lines per scan frame

Remarks

A image frame is composed by individual scan lines. The number of scan lines is
defined by this property.

To scan a frame a minimal value of two scan lines have to be set which are placed at
the bottom and the top of the image height. More scan lines are spread continuously
along the height of a scan frame defined by property ImageHeight.

A line value of one set the image height to zero and single profile line can be measured.

The movement from one scan line to the next is done at the left side of a image frame
and is always as smooth as possible by the resolution of the electronics and not related
to the number of scan lines.

Example

' define a image

objScan.ImageSize 20e-6,20e-6

objScan.Points = 256

objScan.Lines = 256

See also

Property ImageHeight, Points
Method ImageSize

7.10.1.13 Scan::LineScanning

Returns or set the mode a scan line is scanned.

Syntax

scan.LineScanning [= mode]

Setting

Argument Type Description

mode long Defines the how a scan line is scanned. See modes in the table

246 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

below.

Remarks

Scan lines can be measured differently. This property defines this.

Table of scan line mode values and description:

State
No.

Name Description

0 Standard The tip is scanned over the surface with Z-Controller
settings and topography information is recorded

1 Dual scan In Dual-Pass Imaging Mode each scan line is measured
first with z-controller on and then a second time with
lifted tip and Z-Controller off, both as Forward Scan and
Backward Scan.

The parameter “Contour” enables the contour
reproduction, otherwise only the slope is corrected.

The parameter “Lift Height” defines the lift up distance
used for the second pass. The z reference position is
taken at the tip z position at the start x/y-position of the
second pass.

2 Interlaced In Interlaced Dual-Pass Imaging Mode each scan line is
measured first as Forward scan line with z-controller on
and then during the backward scan line with lifted tip and
Z-Controller off .

The parameter “Contour” enables the contour
reproduction, otherwise only the slope is corrected.

The parameter “Lift Height” defines the lift up distance
used for the second pass. The z reference position is
taken at the tip z position at the start x/y-position of the
second pass.

3 Second scan only In Second-Pass Only Imaging Mode each scan line is
measured only with z-controller off. At the beginning of
the scan line the Z-Controller is switched off and the tip
is lifted. Then only Slope corrected Second-Pass is
possible. Optional the Surface reference is probed again
prior the backward scan line.

The parameter “Dual Probing” activates baseline probing
of surface also for the backward scan. Otherwise
baseline probing is only done for forward scan.

The parameter “Lift Height” defines the lift up distance
used for the second pass. The z reference position is
taken at the tip z position at the start x/y-position of the
second pass.

247Object Reference

©2022 by Nanosurf, all rights reserved

See also

Property RelTipPos

Version info

 Software v3.6.0.0 or later

7.10.1.14 Scan::Measuremode

Returns or set the mode of measure a scan line.

Syntax

scan.Measuremode [= mode]

Setting

Argument Type Description

mode long Defines the mode of measure a scan line. See modes in the table
below.

Remarks

Each scan line is divided in a forward scan and a backward scan. Which direction is
stored in the image matrix is defined by this property.

Table of measure mode values and description:

State
No.

Name Description

0 Measure_None not allowed

1 Measure_Forward Record forward scan data only

2 Measure_Backward Record backward scan data only

3 Measure_FwBw Record forward and backward scan data

See also

Method Start

248 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.10.1.15 Scan::Overscan

Returns or set the over scan factor per scan line.

Syntax

scan.Overscan [= overscan]

Setting

Argument Type Description

overscan double Defines the over scan factor per scan line in percentage

Remarks

Each scan line can be set larger that the measured and displayed part of it. This can
help on bad samples reducing start of scan line signal distortions. If Overscan is a
none zero vale then the physical scanning of a scan line is larger than defined in
ImageWidth. On both sides of the scan line a part of the movement is suppressed
during data accusation. The length of the suppressed part is

Overscan size = ImageWidth * Overscan / 100

therefore the real physical movement is

scan line length = ImageWidth * (1+2*Overscan/100)

Example

' activate an over scan of 10%

objScan.ImageWidth = 30e-6

objScan.Overscan = 10.0

See also

Property ImageWidth

7.10.1.16 Scan::Points

Returns or set the data points per scan line.

Syntax

scan.Points [= points]

Setting

249Object Reference

©2022 by Nanosurf, all rights reserved

Argument Type Description

points long Defines the number of data points per scan line

Remarks

During the movement along each scan line a number of data points are taken and
stored in a matrix in memory. The signal channels which are measured at each data
point is related to the active operating mode but normally at least the z height
information signal is measured.

A minimal value of two data points have to be set which are placed at the start and the
end of each scan line. More data points are spread continuously along the width of a
scan line defined by property ImageWidth.

The scan movement is always as smooth as possible by the resolution of the
electronics and not related to the number of data points. Depending on the used Z
Controller algorithm a filtering of the measurement can be enabled to suppress noise.

Example

' define a image

objScan.ImageSize 20e-6,20e-6

objScan.Points = 256

objScan.Lines = 256

See also

Property ImageWidth, Lines, Scantime
Method ImageSize
Class ZController

7.10.1.17 Scan::ReadjustLiftHeight

Returns or set the ReadjustLiftHeight.

Syntax

scan.ReadjustLiftHeight [= distance]

Setting

Argument Type Description

distance double Defines the ReadjustLiftHeight in meter

Remarks

250 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Property AutoReadjustProbeEnabled

Version info

 Software v3.6.0.0 or later

7.10.1.18 Scan::RelTipPos

Returns or set the offset of the tip in ConstHeight mode.

Syntax

scan.RelTipPos [= offset]

Setting

Argument Type Description

offset double Defines the position of the tip relative to surface height in
ConstHeight Linemode.

Remarks

If LineMode is set to "ConstHeight" this property defines the position of the tip during the
measurement of a scan line. It is a relative position to the current surface height at the
beginning of a scan line. The surface height is sensed at each start of a movement (e.g
Forward_Scan and Backward_Scan)

Example

' Measure an image in ConstHeight Mode

objScan.LineScanning = 3

objScan.RelTipPos = -500e-9 'nm

objScan.Start

See also

LineMode Property, Scan::LineScanning

7.10.1.19 Scan::Rotation

Returns or set the image rotation.

Syntax

scan.Rotation [= angle]

251Object Reference

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

angle double Defines the rotation angle of the image in degree

Remarks

The image can be rotated around its center point by any angel according to the physical
reference coordinate system. A positive angle defines a rotation of the scan line in
positive scientific notation. The center point of the image is defined by the CenterPosX
and CenterPosY properties.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

' rotate a image by 45 degree

objScan.Rotation = 45.0

See also

Property CenterPosX, CenterPosY

7.10.1.20 Scan::Scanmode

Returns or set the mode of scanning a image frame.

Syntax

scan.Scanmode [= mode]

Setting

Argument Type Description

mode long Defines the mode of scanning. See modes in the table below.

Remarks

The continuous imaging process can be controlled with this property. The following
modes are available. The Scanmode value has only an effect if scan process is
started with method Start.

Table of scan mode values and description:

252 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

State
No.

Name Description

0 Scanmode_Continuous Switch scan direction after each scan frame

1 Scanmode_ContUp scan direction always upward (scan line 0 to max)

2 Scanmode_ContDown scan direction always downward (scan line max to 0)

See also

Method Start

7.10.1.21 Scan::Scantime

Returns or set the time used for scanning one scan line.

Syntax

scan.Scantime [= time]

Setting

Argument Type Description

time double Defines the time used to scan one scan line in seconds.

Remarks

This property is defining the time for one scan line in one direction. A scan line needs
twice the time defined with Scantime for scanning a scan line in both forward and
backward direction.

Normally the time to move a length of ImageWidth is equal Scantime. But if Overscan
is none zero the time has to calculated as:

Time for ImageWidth = Scantime / (1+2*Overscan/100)

Example

' set scantime to get a scan frame in 5min

objScan.Scantime = 5 * 60 / objScan.Lines / 2

See also

Property ImageWidth, Lines, Overscan

253Object Reference

©2022 by Nanosurf, all rights reserved

7.10.1.22 Scan::SlopeX

Returns or set the X-Axis slope compensation angle.

Syntax

scan.SlopeX [= angle]

Setting

Argument Type Description

angle double Defines the X-Axis slope angle in degree

Remarks

The image plane can be tilted to compensate a sample slope. A positive angle defines
a rotation of the scan line in positive scientific notation around the X-Axis.

If Rotation is zero the SlopeX is used to compensate the slope along the ImageWidth
and SlopeY the slope along ImageHeight!

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

' compensate a slope of 3 degree

objScan.SlopeX = 3.0

See also

Property SlopeY, Rotation

7.10.1.23 Scan::SlopeY

Returns or set the Y-Axis slope compensation angle.

Syntax

scan.SlopeY [= angle]

Setting

Argument Type Description

angle double Defines the Y-Axis slope angle in degree

254 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

The image plane can be tilted to compensate a sample slope. A positive angle defines
a rotation of the scan line in positive scientific notation around the Y-Axis.

If Rotation is 90° the SlopeY is used to compensate the slope along the ImageWidth
and Slopex the slope along ImageHeight!

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

' compensate a slope of -0.5 degree

objScan.SlopeY = -0.5

See also

Property SlopeX, Rotation

7.10.1.24 Scan::SndScanDynamicAmplitude

Returns or set the SndScanDynamicAmplitude.

Syntax

scan.SndScanDynamicAmplitude [= amplitude]

Setting

Argument Type Description

amplitude double Defines the SndScanDynamicAmplitude in volt

Remarks

See also

Property SndScanDynamicAmplitudeEnabled

Version info

 Software v3.6.0.0 or later

255Object Reference

©2022 by Nanosurf, all rights reserved

7.10.1.25 Scan::SndScanDynamicAmplitudeEnabled

Returns or set the SndScanDynamicAmplitudeEnabled.

Syntax

scan.SndScanDynamicAmplitudeEnabled [= state]

Setting

Argument Type Description

state bool Defines the SndScanDynamicAmplitudeEnabled state

Remarks

See also

Property SndScanDynamicAmplitude

Version info

 Software v3.6.0.0 or later

7.10.1.26 Scan::SndScanEnableDarkMode

Returns or set the SndScanEnableDarkMode.

Syntax

scan.SndScanEnableDarkMode [= state]

Setting

Argument Type Description

state bool Defines the SndScanEnableDarkMode state

Remarks

Version info

 Software v3.6.0.0 or later

256 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.10.1.27 Scan::SndScanEnableKPFM

Returns or set the SndScanEnableKPFM.

Syntax

scan.SndScanEnableKPFM [= state]

Setting

Argument Type Description

state bool Defines the SndScanEnableKPFM state

Remarks

Version info

 Software v3.6.0.0 or later

7.10.1.28 Scan::SndScanForceModulationAmplitude

Returns or set the SndScanForceModulationAmplitude.

Syntax

scan.SndScanForceModulationAmplitude [= amplitude]

Setting

Argument Type Description

amplitude double Defines the SndScanForceModulationAmplitude in volt

Remarks

See also

Property SndScanForceModulationAmplitudeEnabled

Version info

 Software v3.6.0.0 or later

257Object Reference

©2022 by Nanosurf, all rights reserved

7.10.1.29 Scan::SndScanForceModulationAmplitudeEnabled

Returns or set the SndScanForceModulationAmplitudeEnabled.

Syntax

scan.SndScanForceModulationAmplitudeEnabled [= state]

Setting

Argument Type Description

state bool Defines the SndScanForceModulationAmplitudeEnabled state

Remarks

See also

Property SndScanForceModulationAmplitude

Version info

 Software v3.6.0.0 or later

7.10.1.30 Scan::SndScanSndLockInExcitationAmplitude

Returns or set the SndScanSndLockInExcitationAmplitude.

Syntax

scan.SndScanSndLockInExcitationAmplitude [= amplitude]

Setting

Argument Type Description

amplitude double Defines the SndScanSndLockInExcitationAmplitude in volt

Remarks

See also

Property SndScanSndLockInExcitationAmplitudeEnabled

Version info

 Software v3.6.0.0 or later

258 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.10.1.31 Scan::SndScanSndLockInExcitationAmplitudeEnabled

Returns or set the SndScanSndLockInExcitationAmplitudeEnabled.

Syntax

scan.SndScanSndLockInExcitationAmplitudeEnabled [= state]

Setting

Argument Type Description

state bool Defines the SndScanSndLockInExcitationAmplitudeEnabled state

Remarks

See also

Property SndScanSndLockInExcitationAmplitude

Version info

 Software v3.6.0.0 or later

7.10.1.32 Scan::SyncOutMode

Returns or selects the mode of the synchronization output.

Syntax

scan.SyncOutMode [= mode]

Setting

Argument Type Description

mode long Defines the signal generated at the synchronization output during a
spectroscopy. See mode numbers in the table below.

Remarks

During a spectroscopy modulation different synchronisation signal can be generated at
the sync output.
The sync pulse durations is about 4us.

Table of possible modes:

259Object Reference

©2022 by Nanosurf, all rights reserved

State
No.

Name Description

0 SyncOut_NoSync No sync pulses are generated output is at Low-Lever.

1 SyncOut_PulsSample At each spectroscopy sample position a High-Pulse is
generated

2 SyncOut_PulsBegin At the beginning of spectroscopy measurement a High-
Pulse is generated

3 SyncOut_PulsEnd At the end of spectroscopy measurement a High-Pulse
is generated

4 SyncOut_PulsBeginAnd
End

At the beginning and the end of spectroscopy
measurement a High-Pulse is generated

5 SyncOut_LevelBeginToE
nd

A High level is generated during the spectroscopy
measurement.

See also

Description of Sync-Output in the Operating Manual

Version info

 Software v1.4.0 or later

7.10.1.33 Scan::ZPlane

Returns or set the Z-Axis center position.

Syntax

scan.ZPlane [= pos]

Setting

Argument Type Description

pos double Defines the Z-Axis center in meter

Remarks

The z axis position of the tip can be predefined with this property. Any Z-Controller
feedback position signal is added to this reference plane value.

If the Z-Controller is switch off or is very slow the tip position can be controlled by these
property. During scanning the slope compensation plane is added to the tip position
too. Therefore the tip is moving during scanning along a 3D plane defined by the

260 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

position vector CenterPosX, CenterPosY, ZPlane and the rotation vectors SlopeX,
SlopeY and Rotation.

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

See also

Property CenterPosX, CenterPosY, SlopeX, SlopeY, Rotation

7.10.1.34 Scan::PrescanSpeedup

Returns or sets the speedup of the Prescan scan mode. The speedup doubles with
each integer increase of the PrescanSpeedup value.

Syntax

scan.PrescanSpeedup [= val]

Setting

Argument Type Description

PrescanSp
eedup

long Defines the doubling of the speedup value of the Prescan scan
mode

Remarks

Example

' define a speedup of 8

objScan.PrescanSpeedup = 3

See also
Method StartPrescan

7.10.2 Methods

7.10.2.1 Scan::Currentline

Returns the number of the last measured scan line.

Syntax

line = scan.Currentline

Result

261Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

line long The last measured scan line number.

Remarks

This method is returning the number of the last measured scan line.
A scan frame is composed of scan lines. Scan line zero is the bottom one and the top
most is number Lines - 1.

This method can be used to monitor which scan lines are already measured during a
imaging process of a scan frame.

Example

' keep track of measured scan lines and save topography to file

Dim objApp : Set objApp = CreateObject("Nanosurf.Application")

Dim objScan : Set objScan = objApp.Scan

Dim objFS : Set objFS = CreateObject("Scripting.FileSystemObject")

Dim objFile : Set objFile = objFS.CreateTextFile("c:\Image.csv")

Dim curline

Dim scanline

' start scan

objScan.StartFrameUp

' process all scan lines

curline = 0

Do While objScan.IsScanning

 If objScan.Currentline > curline Then

 ' save scanline

 scanline = objScan.GetLine(0,1,curline,0,0)

 objFile.WriteLine scanline

 ' wait for next

 curline = curline + 1

 End If

Loop

' process last line

scanline = objScan.GetLine(0,1,curline,0,0)

objFile.WriteLine scanline

' clean up

objFile.Close

Set objFile = Nothing

Set objFS = Nothing

Set objScan = Nothing

Set objApp = Nothing

See also

Property Lines

262 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method StartFrameUp, GetLine, IsScanning

7.10.2.2 Scan::DeleteBuffer

Deletes the content of the chart buffer.

Syntax

scan.DeleteBuffer

Remarks

This method deletes the content of the chart buffer.

Example

' delete chart buffer

objScan.DeleteBuffer

See also

Property AutoDeleteBuffer

7.10.2.3 Scan::GetFrameDir

Returns the current scan direction.

Syntax

dir = scan.GetFrameDir

Result

Result Type Description

dir long Returns the current scan direction. Valid direction number see
table below.

Remarks

This method is returning the number of scan direction.

Table of direction number:

State
No.

Name Description

0 ScanDir_None Not scanning

1 ScanDir_Up Currently scanning upward

2 ScanDir_Down Currently scanning downward

263Object Reference

©2022 by Nanosurf, all rights reserved

Example

objScan.Start

objApp.Sleep(30)

If objScan.GetFrameDir <> 0 Then

 objApp.PrintStatusMsg "Scanning"

Else

 objApp.PrintStatusMsg "No scanning"

End If

See also

Method Start

7.10.2.4 Scan::GetLine

Returns a string of data values of a scan line.

Syntax

array = scan.GetLine(group,channel,scanline,filter,conversion)

Argument

Paramete
r

Type Description

group long number of group

channel long number of channel

scanline long scan line number

filter long index of mathematical filter to be used

conversion long index of conversion type of results

Result

Result Type Description

array String Character string with comma separated values of all the values of
the scan line

Remarks

This method returns a string of data values of a scan line. Any signal of a measured
image frame can be extracted and the data values can be processed with the same
filters as available for the user in the "Chart Toolbar". The result is in a comma

264 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

separated string in different numerical formats.

The first two arguments group and channel selects the matrix of a specific signal.

The group number for scanned image frames depends on the measure mode.

Table of group numbers:

Measure mode Group
No.

Group Name Description

Measure_Forw
ard

0 Group_ForwardSc
an

Groupf of image data for forwards scan
lines

Measure_Back
ward

0 Group_Backward
Scan

Groupf of image data for backward scan
lines

Measure_FwB
w

0 Group_ForwardSc
an

Groupf of image data for forwards scan
lines

1 Group_Backward
Scan

Groupf of image data for backward scan
lines

In each group there are different channels. To get the values of a specific signal one
has to know the channel number. If a certain channel is available in a measurement
depends on the active operating mode during the measurement.

Table of channel numbers:

Channel
No.

Signal Name Description

0 SigDeflection Static cantilever deflection signal

1 SigTopograph
y

Z-Topography signal

2 SigAmplitude Cantilever vibrating amplitude signal

3 SigPhase Cantilever phase shift signal

4 SigUser User's defined ADC input signal

The argument scanline is the number of the scan line to extract. 0 is the bottom line
and property Lines -1 the top most one.

The argument filter and conversion defines the data processing algorithm and
formating to be used.
See parameter tables at Data.GetLine Method.

265Object Reference

©2022 by Nanosurf, all rights reserved

Example

' get topography of scan line 5 with plane fit filter active and in [m]

scanline = objScan.GetLine(0,1,5,2,1)

' get user input signal of current scan line, no filter as 16bit values

scanline = objScan.GetLine(0,5,objScan.Currentline,0,0)

See also

Property Lines
Method Start, Currentline

7.10.2.5 Scan::ImageSize

Sets width and height of a scan frame.

Syntax

scan.ImageSize(width,height)

Argument

Paramete
r

Type Description

width double Width of the image frame in meter

height double Height of the image frame in meter

Remarks

This method sets the width and height of a scan frame with one call. The difference to
setting the size by the properties ImageWidth and ImageHeight is that no intermediate
tip movement is performed between the two property call and value rounding problems
are avoided better for small scan frame sizes.

For more detailed description of the arguments see ImageWidth and ImageHeight
property.

Example

' set scan frame to 100nm

objScan.ImageWidth = 100e-9

objScan.ImageHeight = 100e-9

' better is using ImageSize method

objScan.ImageSize 100e-9,100e-9

266 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Property ImageWidth, ImageHeight

7.10.2.6 Scan::IsCapturing

Returns if a capture is pending or not.

Syntax

flag = scan.IsCapturing

Result

Result Type Description

flag Boolean Returns True if a capture is pending

Remarks

This method is returing True if a capture is pending.

Example

If objScan.IsCapturing Then

 objScan.StopCapture

End If

See also

Method StartCapture, StopCapture

7.10.2.7 Scan::IsPaused

Returns if a scan is in paused or not.

Syntax

flag = scan.IsPaused

Result

Result Type Description

flag Boolean Returns True if imaging is in process

267Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

This method is returning True if a scan is currently paused.

Example
' measure a frame

objScan.StartFrameUp

' pause process

objScan.Pause

' do something

' measure a frame

objScan.StartFrameUp

See also

Method Pause, StartFrameUp, StartFrameDown, Start

7.10.2.8 Scan::IsScanning

Returns if a scan is in process or not.

Syntax

flag = scan.IsScanning

Result

Result Type Description

flag Boolean Returns True if imaging is in process

Remarks

This method is returning True if a scan is currently running.

Example

' measure image

objScan.StartFrameUp

Do While objScan.IsScanning : Loop

' copy image date

objScan.StartCapture

See also

Method StartFrameUp, StartFrameDown, Start

268 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.10.2.9 Scan::IsScanningPrescan

Returns if a Prescan is in process or not.

Syntax

flag = scan.IsScanningPrescan

Result

Result Type Description

flag Boolean Returns True if imaging is in process

Remarks

This method is returning True if a Prescan is currently running.

Example

' measure image

objScan.StartPrescan

Do While objScan.IsScanningPrescan : Loop

' copy image data

objScan.StartCapture

See also

Method StartPrescan, StartFrameDown, Start

7.10.2.10 Scan::IsSlopeCorrectionRunning

Returns if a slope correction process is running or not.

Syntax

flag = scan.IsSlopeCorrectionRunning

Result

Result Type Description

flag Boolean Returns True if a slope correction is running

Remarks

269Object Reference

©2022 by Nanosurf, all rights reserved

This method is returning True if a scan is currently running.

Example

' slope correction

objScan.StartSlopeCorrection

Do While objScan.IsSlopeCorrectionRunning : Loop

See also

Method StartSlopeCorrection

7.10.2.11 Scan::Pause

Pause continuous imaging of scan frames or just single scan frames.

Syntax

scan.Pause

Remarks

This method pauses the continuous imaging process of scan frames as well as of
single frames (up and down).

A paused imaging process can be resumed by calling Start or the corresponding
StartFrameUp or StartFrameDown functions.

Example

' prepare scan

objScan.ImageSize 2e-6,2e-6

objScan.Scantime = 0.7

' start scan

objScan.Start

' pause immediately

objScan.Pause

' restart

objScan.Start

See also

Method IsPaused, Start, StartFrameUp, StartFrameDown

7.10.2.12 Scan::ShowWindow

Defines the display style of the imaging window.

Syntax

270 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

scan.ShowWindow(style)

Arguments

Argument Type Description

style short Visibility style number

Result

None.

Remarks

The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example

objScan.ShowWindow(0) ' hide the imaging window

See also

 None.

Version info

 Software v1.4.0 or later

7.10.2.13 Scan::Start

Starts continuous imaging of scan frames.

Syntax

scan.Start

Remarks

This method is starting the continuous imaging process of scan frames. Scanning is
only finished by the method Stop.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning. Scan frame Property Scanmode defines
how to proceed after a completed scan frame. A call to StartCapture creates a new
document after the current frame is finished.

Operating Mode settings and Z Feedback controller settings should be set to reasonable
values prior imaging but can be adjusted also at any time during the imaging. Prior to be

271Object Reference

©2022 by Nanosurf, all rights reserved

able to scan an z approach should be performed successfully.

To scan single frames use method StartFrameUp or StartFrameDown.

Example

' prepare scan

objScan.ImageSize 2e-6,2e-6

objScan.Scantime = 0.7

' start scan

objScan.Start

' do something else ...

' finish immediately

objScan.Stop

See also

Property Scanmode
Method Stop, StartFrameUp, StartFrameDown
Class Approach, OperatingMode, ZController

7.10.2.14 Scan::StartCapture

Create a new image document.

Syntax

scan.StartCapture

Remarks

This method copies the measured data to a new image document. If a scanning
process is running at the time StartCapture is called a new image document is
created each time a frame is measured.

A pending capture can be canceled with StopCapture. If a capture is pending read
method IsCapturing.

Example

' start imaging

objScan.StartFrameUp

' prepare image copy

objScan.StartCapture

' wait until copy is taken at end of frame

Do While objScan.IsCapturing : Loop

See also

272 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method StopCapture, IsCapturing
Method Application.SaveDocument

7.10.2.15 Scan::StartFrameDown

Starts a single down frame image

Syntax

scan.StartFrameDown

Remarks

This method is starting a single image starting from the top to the bottom. During the
scan process IsScanning is True and if StartCapturing is called during the frame a
new document is created after the scan frame is finished. At the end the tip is moved to
the center of the image.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning.

Prior to be able to scan a z-approach should be performed successfully.

Example

' prepare scan

objScan.ImageSize 2e-6,2e-6

objScan.Scantime = 0.7

' measure image

objScan.StartFrameDown

Do While objScan.IsScanning : Loop

' copy image date

objScan.StartCapture

See also

Method IsScanning, StartFrameUp
Class Approach

7.10.2.16 Scan::StartFrameUp

Starts a single up frame image

Syntax

273Object Reference

©2022 by Nanosurf, all rights reserved

scan.StartFrameUp

Remarks

This method is starting a single image starting from the bottom to the top. During the
scan process IsScanning is True and if StartCapturing is called during the frame a
new document is created after the scan frame is finished. At the end the tip is moved to
the center of the image.

The size and other properties of a scan frame should be predefined prior the start but
can be changed anytime also during scanning.

Prior to be able to scan a z-approach should be performed successfully.

Example

' prepare scan

objScan.ImageSize 2e-6,2e-6

objScan.Scantime = 0.7

' measure image

objScan.StartFrameUp

Do While objScan.IsScanning : Loop

' copy image date

objScan.StartCapture

See also

Method IsScanning, StartFrameDown
Class Approach

7.10.2.17 Scan::StartPrescan

Starts a single up frame image

Syntax

scan.StartScanPrescan

Remarks

This method is starting a single Prescan image starting from the bottom to the top.
During the scan process IsScanningPrescan is True and if StartCapturing is called
during the frame a new document is created after the scan frame is finished. At the end
the tip is moved to the center of the image.

The size and other properties of a scan frame should be predefined prior the start.

274 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Prior to be able to scan a z-approach should be performed successfully.

Example

' prepare scan

objScan.ImageSize 2e-6,2e-6

objScan.Scantime = 0.7

objScan.PrescanSpeedup = 3 ' every 8th line is scanned

' measure image

objScan.StartScanPrescan

Do While objScan.IsScanningPrescan : Loop

' copy image date

objScan.StartCapture

See also

Method IsScanningPrescan

7.10.2.18 Scan::StopPrescan

Stops Prescan imaging immediately.

Syntax

scan.StopPrescan

Remarks

This method stops any Prescan process immediately after the current scan line is
finished. The tip is moved to the center of the image.

A possible pending capture flag is also aborted and no document is created.

Example

' start scan

objScan.StartPrescan

' do something else ...

' finish immediately

objScan.StopPrescan

See also

Method Start, StartPrescan

7.10.2.19 Scan::StartSlopeCorrection

Starts the slope correction

Syntax

275Object Reference

©2022 by Nanosurf, all rights reserved

scan.StartSlopeCorrection

Remarks

This method is starting the X / Y slope correction. During the slope correction process
IsSlopeCorrectionRunning is True.

Example

' slope correction

objScan.StartSlopeCorrection

Do While objScan.IsSlopeCorrectionRunning : Loop

See also

Method IsSlopeCorrectionRunning

7.10.2.20 Scan::Stop

Stops imaging immediately.

Syntax

scan.Stop

Remarks

This method stops any scan process immediately after the current scan line is finished.
The tip is moved to the center of the image.

A possible pending capture flag is also aborted and no document is created.

Example

' start scan

objScan.Start

' do something else ...

' finish immediately

objScan.Stop

See also

Method Start, StartFrameUp, StartFrameDown

7.10.2.21 Scan::StopCapture

Cancel a pending capture

Syntax

276 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

scan.StopCapture

Remarks

This method cancel a pending capture. If a capture is pending read method
IsCapturing.

Example

' start imaging

objScan.StartFrameUp

' prepare image copy

objScan.StartCapture

' do something

If objScan.IsCapturing Then

 objScan.StopCapture

End If

See also

Method StartCapture, IsCapturing

7.11 ScanHead

The ScanHead class handles the scan head subsystem.

A object pointer to this class is provided by the Application.ScanHead object property.

Table of properties for ScanHead class:

Property name Purpose

HeadName Get the name of the current attached scan head

HeadID Get the ID number of the current attached scan head

AFMSensorStatus Get the AFM sensor status

ApproachMotorStatus Get the approach motor status

DetectorLateralPos Get the detectors lateral position

DetectorNormalPos Get the detectors normal position

LaserPowerMode Get the mode of the laser power measurement

LaserPower Get the laser power normalized

LaserPowerAbsolute Get the laser power as absolute value in [W]

277Object Reference

©2022 by Nanosurf, all rights reserved

LaserPowerCurrent Get the laser power as absolute value in [A]

ScanHead::IsLaserControlable Get the information wether the laser in controlable(On/
Off) or not

ScanHead::LaserOn Get and set the readout laser

ScanHead::LaserSetpoint Get and set the readout laser setpoint

ScanHead::IsExcitationLaserControlla
ble

Get the information wether the excitation laser is
available and controlable(On/Off) or not

ScanHead::ExcitationLaserOn Get and set the excitation laser setpoint

ScanHead::ExcitationLaserSetpoint Get and set the excitation laser setpoint

STMSensorStatus Get the STM sensor status

DeflectionUnitMode Defines the unit of deflection signal

Cantilever Defines the selected cantilever by Index position

CantileverByGUID Defines the selected cantilever by its GUID number

CurrentDeflectionZCompensation Defines the current Z compensation.

CurrentDeflection Defines the current active deflection sensitivity

CurrentSpringConst Defines the current active spring constant used to
calculate the deflection force

InvertedUserOutput1 Defines the output polarity of the user output1

InvertedUserOutput2 Defines the output polarity of the user output1

ApproachMotorMode Get the type of the approach motor

AppraochMotorPosition Get the position of the approach motor

DeflectionCalibration Retrieve a object pointer to the Deflection calibration
wizard class

ThermalTuning Retrieve a object pointer to the Thermal Tuning class

Table of methods for ScanHead class:

Method name Purpose

AdjustDetectorNormalOffset Readjust the cantilever deflection offset

IsApproachMotorStatusDataValid Returns "TRUE" if a data request is valid

IsDetectorStatusDataValid Returns "TRUE" if a data request is valid

IsSensorStatusDataValid Returns "TRUE" if a data request is valid

TriggerApproachMotorStatus Request asynchronous data

TriggerDetectorStatus Request asynchronous data

278 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

TriggerSensorStatus Request asynchronous data

GetCantileverProperty Get a property value of the active cantilever

SetCantileverProperty Set a property value of the active cantilever

GetCalibrationSignalMax Get the maximal calibration value of a signal

SetCalibrationSignalMax Set a new value to a signal calibration

GetCalibrationSignalName Get the name of a signal

SetCalibrationSignalName Set a new name to a signal

GetCalibrationSignalUnit Get the the unit a signal

SetCalibrationSignalUnit Set a new unit to a signal

GetAFMSensorStatusMeterRange Read the various sensor signal status meter range values

GetApproachMotorStatusMeterRange Read the various approach motor status meter range
values

7.11.1 Properties

7.11.1.1 ScanHead::STMSensorStatus

Get the STM sensor status.

Syntax

scanhead.STMSensorStatus [read only]

Argument

Paramete
r

Type Description

value DOUBLE Sensor status in [A]

Remarks

None

See also

None

7.11.1.2 ScanHead::LaserPowerMode

Get the laser power.

Syntax

scanhead.LaserPowerMode [read only]

279Object Reference

©2022 by Nanosurf, all rights reserved

Argument

Paramete
r

Type Description

value LONG LaserPowerMode_Undefined = 0,
LaserPowerMode_LaserDrive = 1,
LaserPowerMode_LaserPower = 2,
LaserPowerMode_DetectorIndensity = 3,

Remarks

This property returns the mode of the laser power measurement unit in the scan head
currently attached.

In the LaserDrive mode the laser power monitors the laser's electrical drive.

In the LaserPower mode the laser power monitors the real laser optical power.

In the DetectorSensitivity mode the laser power monitors the sum signal of the detector.

See also

LaserPower, LaserPowerAbsolute, LaserPowerCurrent

7.11.1.3 ScanHead::LaserPowerCurrent

Get the laser power.

Syntax

scanhead.LaserPowerCurrent [read only]

Argument

Paramete
r

Type Description

value DOUBLE Laser power in [A]

Remarks

The current optical laser power can be monitored on some scan heads. If this is
possible this property returns the energy currently the laser is emitting in [A].

If the laser power readout is not supported then the returned value is negative.

See also

LaserPowerMode, LaserPower, LaserPowerAbsolute

280 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.11.1.4 ScanHead::LaserPowerAbsolute

Get the laser power.

Syntax

scanhead.LaserPowerAbsolute [read only]

Argument

Paramete
r

Type Description

value DOUBLE Laser power in [W]

Remarks

The current optical laser power can be monitored on some scan heads. If this is
possible this property returns the energy currently the laser is emitting in [W].

If the laser power readout is not supported then the returned value is negative.

See also

LaserPowerMode, LaserPower, LaserPowerCurrent

7.11.1.5 ScanHead::LaserPower

Get the laser power.

Syntax

scanhead.LaserPower [read only]

Argument

Paramete
r

Type Description

value DOUBLE Laser power [0.0 .. +1.0]

Remarks

This property monitors the laser power in the scan head and reports it as a normalized
value.

Depending on the scan head the laser power monitors the laser electrical drive power or
the laser optical power.

A small value means that the electronics reduce the laser energy to get a fix amount of
light onto the detector.

If the laser power signal is high the laser has to be driven with large power in order to get
a fix amount of light onto the detector.

281Object Reference

©2022 by Nanosurf, all rights reserved

See also

LaserPowerMode, LaserPowerAbsolute, LaserPowerCurrent

7.11.1.6 ScanHead::IsLaserControlable

Says if the laser is controlable.

Syntax

scanhead.IsLaserControlable [read only]

Argument

Paramete
r

Type Description

value BOOL Says if the laser can be truned on and off

Remarks

This property tells the user if the connected device/scanhead allows to turn on or off the
laser.

See also

ScanHead::LaserOn

7.11.1.7 ScanHead::LaserOn

Tells if the readout laser is ON or OFF.
Turns the readout laser ON or OFF.

Syntax

objScanhead.LaserOn = TRUE or FALSE

value = objScanhead.LaserOn

Argument

Paramete
r

Type Description

value BOOL TRUE if ON FALSE of OFF

Remarks

none

282 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

ScanHead::IsLaserControlable

7.11.1.8 ScanHead::LaserSetpoint

Get or set the readout laser setpoint.

Syntax

value = objScanhead.LaserSetpoint

objScanhead.LaserSetpoint = newValue

Argument

Paramete
r

Type Description

value DOUBLE Defines the setpoint of the readout laser in watt [W]

Remarks

This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

See also

None

7.11.1.9 ScanHead::IsExcitationLaserControllable

Tells if the excitation laser is available and controllable.

Syntax

value = objScanhead.IsExcitationLaserControllable

Argument

Paramete
r

Type Description

value BOOL Tells if the excitation laser is available and controllable(ON/OFF and
setpoint)

Remarks

This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

283Object Reference

©2022 by Nanosurf, all rights reserved

See also

None

7.11.1.10 ScanHead::ExcitationLaserOn

Tells if the excitation laser is ON or OFF.
Turns the excitation laser ON or OFF.

Syntax

objScanhead.ExcitationLaserOn = TRUE or FALSE

value = objScanhead.ExcitationLaserOn

Argument

Paramete
r

Type Description

value BOOL TRUE if ON FALSE of OFF

Remarks

This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

See also

None

7.11.1.11 ScanHead::ExcitationLaserSetpoint

Get or set the excitation laser setpoint.

Syntax

value = objScanhead.ExcitationLaserSetpoint

objScanhead.ExcitationLaserSetpoint = newValue

Argument

Paramete
r

Type Description

Setpoint
value

DOUBLE Defines the setpoint of the excitation laser in watt [W]

Remarks

This property is only available on Drive-Products (DriveAFM, DriveMount, DriveNMA)

284 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

None

7.11.1.12 ScanHead::HeadName

Get the name of the current attached scan head

Syntax

scanhead.HeadName [read only]

Argument

Paramete
r

Type Description

value String Name of the scan head

Remarks

The controller detects the attached scan head and assign to it a name. This name can
be read out by this property.

If no scan head or a unknown scan head is attached it returns "undefined".

See also

HeadID

7.11.1.13 ScanHead::HeadID

Get the ID number of the current attached scan head

Syntax

scanhead.HeadID [read only]

Argument

Paramete
r

Type Description

value LONG Head_NC = 0,
Head_Unknown = 1
Head_EasyscanSTM = 2,
Head_EasyscanAFM = 9,
Head_NaniteAFM = 12,
Head_FlexAFM = 14,
Head_LensAFM = 15,

Remarks

The controller detects the attached scan head and assign to it ID number. This ID
number can be read out by this property.

285Object Reference

©2022 by Nanosurf, all rights reserved

See also

HeadName

7.11.1.14 ScanHead::DetectorNormalPos

Get the detectors normal position.

Syntax

scanhead.DetectorNormalPos [read only]

Argument

Paramete
r

Type Description

value DOUBLE Detector normal position [-1.0 .. +1.0]

Remarks

None

See also

None

7.11.1.15 ScanHead::DetectorLateralPos

Get the detectors lateral position.

Syntax

scanhead.DetectorLateralPos [read only]

Argument

Paramete
r

Type Description

value DOUBLE Detector lateral position [-1.0 .. +1.0]

Remarks

None

See also

None

286 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.11.1.16 ScanHead::DeflectionUnitMode

Defines used unit for the deflection signal

Syntax

scanhead.DeflectionUnitMode [= index]

Argument

Argument Type Description

index long Defines the unit of the deflection signal.

Remarks

For Static Force Mode AFM different signal units could be of interest. How the
deflection signal is displayed in the charts are defined by this property.

The following mode indexes are defined:

DefUnitMode_V = 0,
 DefUnitMode_m = 1,
 DefUnitMode_N = 2,

See also

objZCtrl.SetPointForceUnitMode

7.11.1.17 ScanHead::CurrentSpringConst

Get/Set the currently used spring const value

Syntax

scanhead.CurrentSpringConst

Argument

Paramete
r

Type Description

value DOUBLE Spring constant in [N/m]

Remarks

This property handles the actual spring constant calibration value used by the software
to calculate the deflection force in [N].

The spring constant of the actual cantilever is predefined by the cantilever browser

287Object Reference

©2022 by Nanosurf, all rights reserved

database. For high precision measurements this calibration is not accurate enough

because the manufacturing tolerances of cantilevers are very large.

Therefore the software provides in the SPM Parameter section Tip/Probe dialog a input
field where a more accurate value can be entered.

The actual spring constant measurement can be done by the ThermalTuning dialog with
a C3000.

See also

CurrentDeflection

7.11.1.18 ScanHead::CurrentDeflectionZCompensation

Get/Set the current deflection sensitivity value

Syntax

scanhead.CurrentDeflectionZCompensation

Argument

Paramete
r

Type Description

value DOUBLE Deflection Z compensation [- 2.0 .. +2.0]

Remarks

This property changes the actual compensation value used for Z-Axis position coupling
suppression of the Deflection signal.

If a scan head calibration file is loaded this value is set to the files default value.

See also

7.11.1.19 ScanHead::CurrentDeflection

Get/Set the current deflection sensitivity value

Syntax

scanhead.CurrentDeflection

Argument

Paramete
r

Type Description

288 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

value DOUBLE Deflection sensitivity in [m/V]

Remarks

This property handles the actual deflection sensitivity calibration value used by the
software to calculate the deflection in [m].

The deflection sensitivity is predefined by the scan head calibration file. For high
precision measurements this calibration is not accurate enough

because the deflection sensitivity is also defined by the actual mounted cantilever and
the actual set laser position on the cantilever.

Therefore the software provides in the SPM Parameter section Tip/Probe dialog a input
field where a more accurate value can be entered.

The deflection sensitivity is measured by a F/z-Spectroscopy on a hard surface and by
analyzing the deflection slope.

The deflection sensitivity calibration wizard in the software can be used to automate this
step.

See also

CurrentSpringConst

7.11.1.20 ScanHead::CantileverByGUID

Returns or set the cantilever type mounted in the scan head.

Syntax

scanhead.CantileverByGUID [= index]

Setting

Argument Type Description

index long Defines which cantilever is mounted in the scan head.

Remarks

For AFM different type of cantilevers can be used with different mechanical properties
as stiffness or resonance frequency. This property tells the software which cantilever
the user has mounted.

The application stores each cantilever definition in a database. It is referenced by a
global unique ID number the GUID. If the script knows this GUID it can be used to
select a specific cantilever without knowing its index position in the list of cantilevers as
it is with the Cantilever Property.

289Object Reference

©2022 by Nanosurf, all rights reserved

Some cantilever are Known Cantilever and others are User Defined Cantilever. Known
Cantilever are has fixed predefined GUIDs defined by Nanosurf. User Defined
Cantilevers get their GUID at the time a user create a new Cantilever entry in the
database.

Here's a list of predefined Known Cantilever and their GUID:

 Manufacturer: Anasys Instruments
 Name: GUID:

AN2-200 {BD61D124-8350-4464-BFE4-1D8A156E4913}
GLA-1 {9E2BA28D-D843-41bf-8F62-05502B3EDB18}

 Manufacturer: AppNano
ACL-A {ABB75273-9543-431a-B681-C79B533DD9E6}
ANSCM {40AEA787-942C-4d48-A389-DA81571F009C}
SICON-A {F7A339A7-E29F-42a9-B7AA-D69C54363B76}

 Manufacturer: BudgetSensors
 ContAl-G {ED5A15E6-D3B0-4e64-8C50-809335D3E143}

Multi75E-G {9593403B-A476-49a9-AA1F-9C3AEDAC0178}
Multi75M-G {03D0715C-A520-4976-A5E2-4FC3078E3821}
Multi75Al-G {443A2EDC-5C9C-4d60-843F-C6688BEA1DEA}
Tap190Al-G {041FB80E-A179-4170-B5A4-A4EA1CC0A965}

 Manufacturer: Nanosensors
 CONTR {89E92173-96FB-4ff9-94D8-42296D00D980}

CONTSCPt {1E95D12B-1DDB-4ace-B3AF-BE9C0D52D4FC}
EFMR {986305AC-64B5-462e-B37E-6BD5AE447BE3}
LFMR {C61FCA2C-6D5D-4105-9FDE-640D263E229F}
MFMR {9499F49F-920F-47ec-80B6-883F683FF056}
NCLR {62633FD4-0555-4cee-A8B4-B82F4CEFBB48}
PPP-FMR {EBA2B75C-AA94-4451-AD36-1388CDABF5E8}
XYNCHR {DD3DFE39-455E-40a1-801E-5D5B14CE4080}

Attention: For each cantilever type only some operating modes are useful. Set
OperatingMode accordingly.

For more information please refer to the Nanosurf Software Reference Manual.

Example

' enable dynamic AFM and use NCLR Lever

objOpMode.OperatingMode = 3

objScanHead.CantileverByGUID = "{62633FD4-0555-4cee-A8B4-B82F4CEFBB48}"

See also

Property OperatingMode

290 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.11.1.21 ScanHead::Cantilever

Returns or set the cantilever type mounted in the scan head.

Syntax

scanhead.Cantilever [= index]

Setting

Argument Type Description

index long Defines which cantilever is mounted in the scan head.

Remarks

For AFM different type of cantilevers can be used with different mechanical properties
as stiffness or resonance frequency. This property tells the software which cantilever
the user has mounted.

The cantilevers are defined in a list by the dialog "Config Cantilevers types" in the menu
"Options". From top down to the end of list each definition has its index number. Start
with index 0. This index number is used with this property.

The software then handles the details about them and adjust the internal microscope
electronics accordingly

Attention: For each cantilever type only some operating modes are useful. Set
OperatingMode accordingly.

For more information please refer to the Nanosurf Software Reference Manual.

Example

' enable dynamic AFM and use NCLR Lever

objOpMode.OperatingMode = 3

objScanHead.Cantilever = 1

See also

Property OperatingMode

7.11.1.22 ScanHead::AprroachMotorMode

Get the type of the approach motor.

Syntax

value = scanhead.ApproachMotorMode

291Object Reference

©2022 by Nanosurf, all rights reserved

Argument

Paramete
r

Type Description

value LONG NotDefined = 0,
LimitSwitches = 1
PositionSensor = 2,
NoApproachStatus = 3

Remarks

none

See also

7.11.1.23 ScanHead::ApproachMotorStatus

Get the approach motor status.

Syntax

scanhead.ApproachMotorStatus [read only]

Argument

Paramete
r

Type Description

state LONG LimitStatus_FAIL = '6',
LimitStatus_ERROR = '5',
LimitStatus_NC = '4',
LimitStatus_MAXOUT = '3',
LimitStatus_MININ = '2',
LimitStatus_INRANGE = '1',
LimitStatus_NOTDEFINED = '0',
LimitStatus_NOTDEFINED = -1,

Remarks

None

See also

None

292 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.11.1.24 ScanHead::ApproachMotorPosition

Get the position of the approach motor.

Syntax

value = scanhead.ApproachMotorPosition

Argument

Paramete
r

Type Description

value DOUBLE Position in meter

Remarks

none

See also

7.11.1.25 ScanHead::AFMSensorStatus

Get the AFM sensor status.

Syntax

scanhead.AFMSensorStatus [read only]

Argument

Paramete
r

Type Description

value LONG SensorStatus_LASER_TOLOW = '7',
SensorStatus_LASER_FAIL = '4',
SensorStatus_LASER_TOHIGH = '3',
SensorStatus_LASER_OK = '1',
SensorStatus_NOTDEFINED = -1,

Remarks

None

See also

None

293Object Reference

©2022 by Nanosurf, all rights reserved

7.11.1.26 ScanHead::InvertedUserOutput1

Tells if the user output 1 is inverted or not.
Turns the inversion on user output 1 ON or OFF.

Syntax

objScanhead.InvertedUserOutput1 = TRUE or FALSE

value = objScanhead.InvertedUserOutput1

Argument

Paramete
r

Type Description

value BOOL TRUE if inverted FALSE if not OFF

Remarks

none

See also

none

7.11.1.27 ScanHead::InvertedUserOutput2

Tells if the user output 2 is inverted or not.
Turns the inversion on user output 1 ON or OFF.

Syntax

objScanhead.InvertedUserOutput2 = TRUE or FALSE

value = objScanhead.InvertedUserOutput2

Argument

Paramete
r

Type Description

value BOOL TRUE if inverted FALSE if not OFF

Remarks

none

294 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

none

7.11.1.29 ScanHead::ThermalTuning

Returns a dispatch pointer to the sub class ThermalTuning. This property is read only.

Syntax

application.ThermalTuning [read only]

Result

The ThermalTuning property is returning a pointer to the IDispatch interface of the
ThermalTuning object.

Remarks

Only one single instance exists of ThermalTuning object. All successive read of this
property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create objects

Dim objApp : Set objApp = SPM.Application

Dim objScanhead : Set objScanhead = objApp.Scanhead

Dim objThermalTune : Set objThermalTune = objScanhead.ThermalTuning

' variables

Dim currentAverageData

Dim blockData

Dim frequencyList

Dim shoFitResult

Dim shoFitCurve

Dim numIterations

Dim maxIterations

Dim cantileverLength

Dim cantileverWidth

Dim envDensity

Dim envViscosity

Dim springConstant

numIterations = 0

maxIterations = 1000

cantileverLength = 0.000225

cantileverWidth = 0.000038

envDensity = 1.225

envViscosity = 0.0000185

springConstant = 0

' setup thermal tune

objThermalTune.FreqBandUpperBound 319000 ' Hz

295Object Reference

©2022 by Nanosurf, all rights reserved

objThermalTune.FreqResolution 45 ' Hz

objThermalTune.BlockCount 0 ' continuous

objThermalTune.AverageType 1 ' ProportionalWeight

objThermalTune.CantileverTemperature 21 ' degrees celsius

objThermalTune.FreqLowerBound 85000 ' Hz, fit lower bound

objThermalTune.FreqUpperBound 266000 ' Hz, fit upper bound

' start capture

objThermalTune.Start

' data acquisition and calculation loop

do while (numIterations < maxIterations) :

if (objThermalTune.GetCurrentBlockCount > 0) then

currentAverageData = objThermalTune.GetCurrentAverage

blockData = objThermalTune.GetBlock(false)

frequencyList = objThermalTune.GetFrequencyList

shoFitResult =

objThermalTune.SimpleHarmonicOscFitOnCurrentAverageAndBounds

' calculate k

springConstant =

objThermalTune.CalculateSpringConstant_Sader(cantileverLength, cantileverWidth,

shoFitResult(2), shoFitResult(3), envViscosity, envDensity)

end if

numIterations = numIterations + 1

loop

' stop capture

objThermalTune.stop

' display result

MsgBox springConstant

objThermalTune = nul : Set objThermalTune= Nothing

objApp = nul : Set objApp = Nothing

See also

class ThermalTuning

7.11.2 Methods

7.11.2.1 ScanHead::AdjustDetectorNormalOffset

Starts the offset calibration process for the normal deflection.

Syntax

flag = scanhead.AdjustDetectorNormalOffset

Result

296 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Result Type Description

none none none

Remarks

This method starts the process to recalibrate the normal deflection offset to zero.

See also

Properties ScanHead::DetectorNormalPos

7.11.2.2 ScanHead::GetAFMSensorStatusMeterRange

Returns the normalized SignalMeter border value.

Syntax

value = objScanhead.GetAFMSensorStatusMeter(MeterID)

Argument

Paramete
r

Type Description

MeterID long ID of the Status Meter range to read out

Result

Result Type Description

value double The normalized value of the selected StatusMeterRange

Remarks

The GetAFMSensorStatusMeterRange() method returns the normalized value of a
selected signalmeter border value .

Available SignalMeter ID's are:

 SignalMeter_MinRed = 0,
 SignalMeter_MinOrange = 1,
 SignalMeter_MinGreen = 2,
 SignalMeter_MaxGreen = 3,
 SignalMeter_MaxOrange = 4,
 SignalMeter_MaxRed = 5,

297Object Reference

©2022 by Nanosurf, all rights reserved

See also

TechDoc "NSF SensorSignal Status Information Documentation"

7.11.2.3 ScanHead::GetCantileverProperty

Returns a property value of the current selected cantilever.

Syntax

value = objScanhead.GetCantileverProperty(propid)

Argument

Paramete
r

Type Description

propID long ID of the property to read out

Result

Result Type Description

value double The value of the property

Remarks

The GetCantileverProperty() method returns a value of a selected cantilever
property.

Available properties are:

 CantileverProp_LeverLength = 0,
 CantileverProp_LeverWidth = 1,
 CantileverProp_SpringConst = 2,
 CantileverProp_AirResonanzeFrq = 3,
 CantileverProp_AirQFactor = 4,
 CantileverProp_LiquidResonanzeFrq = 5,
 CantileverProp_LiquidQFactor = 6,

Example

 MsgBox "Current cantilever's spring constant is " &

objScanhead.GetCantileverPropery(2) & "N/m"

See also

298 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

ScanHead.SetCantileverProperty

7.11.2.4 ScanHead::GetCalibrationSignalMax

Returns the calibration value of the selected signal.

Syntax

value = objScanhead.GetCalibrationSignalMax(sigID)

Argument

Paramete
r

Type Description

sigID long ID of the signal to read out

Result

Result Type Description

value double The maximal calibration value of the signal

Remarks

The GetCalibrationSignalMax() method returns the calibration value of a signal.

Available signal ID's are:

 CalibSig_XAxis = 0,
 CalibSig_YAxis = 1,
 CalibSig_ZAxis = 2,
 CalibSig_TipCurrent = 3,
 CalibSig_TipVoltage = 4,
 CalibSig_Ch0_Deflection = 5,
 CalibSig_Ch0_Amp = 6,
 CalibSig_Ch0_Phase = 7,
 CalibSig_Ch0_Excitation = 8,

Example

 MsgBox "Current Z-Axis Range is " &

2.0*objScanhead.GetCalibrationSignalMax(2)*1.0e6 & "um"

See also

ScanHead.SetCalibrationSignalMax

299Object Reference

©2022 by Nanosurf, all rights reserved

7.11.2.5 ScanHead::SetCalibrationSignalMax

Sets the calibration value of the selected signal.

Syntax

ok = objScanhead.SetCalibrationSignalMax(sigID, value)

Argument

Paramete
r

Type Description

sigID long ID of the signal to read out

value double maximal signal value in it native unit

Result

Result Type Description

ok bool TRUE if the signal value could be set

Remarks

The SetCalibrationSignalMax() method sets the calibration value of a signal.

Available signal ID's are:

 CalibSig_XAxis = 0,
 CalibSig_YAxis = 1,
 CalibSig_ZAxis = 2,
 CalibSig_TipCurrent = 3,
 CalibSig_TipVoltage = 4,
 CalibSig_Ch0_Deflection = 5,
 CalibSig_Ch0_Amp = 6,
 CalibSig_Ch0_Phase = 7,
 CalibSig_Ch0_Excitation = 8,

Example

 objScanhead.SetCalibrationSignalMax(5) = 2.5e-6 '[m]

See also

ScanHead.GetCalibrationSignalMax

300 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.11.2.6 ScanHead::GetCalibrationSignalName

Returns the name of the selected signal.

Syntax

value = objScanhead.GetCalibrationSignalName(sigID)

Argument

Paramete
r

Type Description

sigID long ID of the signal to read out

Result

Result Type Description

name string The name of the signal

Remarks

The GetCalibrationSignalName() method returns the name of a signal.

Available signal ID's are defined at ScanHead::GetCalibrationSignalMax

See also

ScanHead.SetCalibrationSignalMax

7.11.2.7 ScanHead::SetCalibrationSignalName

Sets the name of the selected signal.

Syntax

ok = objScanhead.SetCalibrationSignalName(sigID, name)

Argument

Paramete Type Description

301Object Reference

©2022 by Nanosurf, all rights reserved

r

sigID long ID of the signal to read out

name string new name of the signal

Result

Result Type Description

ok bool TRUE if the signal name could be set

Remarks

The SetCalibrationSignalName() method sets the name of a signal.

Available signal ID's please see at ScanHead.GetCalibrationSignalMax

See also

ScanHead.GetCalibrationSignalMax

7.11.2.8 ScanHead::GetCalibrationSignalUnit

Returns the unit of the selected signal.

Syntax

value = objScanhead.GetCalibrationSignalUnit(sigID)

Argument

Paramete
r

Type Description

sigID long ID of the signal to read out

Result

Result Type Description

name string The unit of the signal

Remarks

302 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The GetCalibrationSignalUnit() method returns the unit of a signal.

Available signal ID's are defined at ScanHead::GetCalibrationSignalMax

See also

ScanHead::GetCalibrationSignalName

7.11.2.9 ScanHead::SetCalibrationSignalUnit

Sets the name of the selected signal.

Syntax

ok = objScanhead.SetCalibrationSignalUnit(sigID, unitname)

Argument

Paramete
r

Type Description

sigID long ID of the signal to read out

unitname string new unit of the signal

Result

Result Type Description

ok bool TRUE if the signal unit could be set

Remarks

The SetCalibrationSignalUnit() method sets the unit of a signal.

Available signal ID's please see at ScanHead.GetCalibrationSignalMax

See also

ScanHead.GetCalibrationSignalMax

303Object Reference

©2022 by Nanosurf, all rights reserved

7.11.2.10 ScanHead::IsApproachMotorStatusDataValid

Returns "TRUE" if a data request is valid.

Syntax

flag = scanhead.IsApproachMotorStatusDataValid

Result

Result Type Description

flag Boolean Returns True if the requested data is valid

Remarks

This method is returns True if the requested data is valid.

Example

' start trigger

objScanHead.TriggerApproachMotorStatus

' wait until async data is received

do while (objScanHead.IsApproachMotorStatusDataValid = false) : loop

MsgBox "" & objScanHead.ApproachMotorStatus

See also

Properties ScanHead::ApproachMotorStatus
Method ScanHead::TriggerApproachMotorStatusData

7.11.2.11 ScanHead::IsDetectorStatusDataValid

Returns "TRUE" if a data request is valid.

Syntax

flag = scanhead.IsDetectorStatusDataValid

Result

Result Type Description

flag Boolean Returns True if the requested data is valid

Remarks

304 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

This method is returns True if the requested data is valid.

Example

' start trigger

objScanHead.TriggerDetectorStatus

' wait until async data is received

do while (objScanHead.IsDetectorStatusDataValid = false) : loop

MsgBox "" & objScanHead.LaserPower & " " & objScanHead.DetectorLateralPos & " "

& objScanHead.DetectorNormalPos

See also

Properties ScanHead::DetectorLateralPos, ScanHead::DetectorNormalPos,
ScanHead::LaserPower
Method ScanHead::TriggerDetectorStatus

7.11.2.12 ScanHead::IsSensorStatusDataValid

Returns "TRUE" if a data request is valid.

Syntax

flag = scanhead.IsSensorStatusDataValid

Result

Result Type Description

flag Boolean Returns True if the requested data is valid

Remarks

This method is returns True if the requested data is valid.

Example

' start trigger

objScanHead.TriggerSensorStatus

' wait until async data is received

do while (objScanHead.IsSensorStatusDataValid = false) : loop

' for STM use

MsgBox "" & objScanHead.STMSensorStatus

' for AFM use

305Object Reference

©2022 by Nanosurf, all rights reserved

MsgBox "" & objScanHead.AFMSensorStatus

See also

Properties ScanHead::AFMSensorStatus, ScanHead::STMSensorStatus
Method ScanHead::TriggerSensorStatus

7.11.2.13 ScanHead::SetCantileverProperty

Sets a property value of the current selected cantilever.

Syntax

bool = objScanhead.SetCantileverProperty(propid, value)

Argument

Paramete
r

Type Description

propID long ID of the property to read out

value double new value for selected propID

Result

Result Type Description

ok bool TRUE is the property could be set.

Remarks

The SetCantileverProperty() method sets a value of a selected cantilever property.

Available properties are:

 CantileverProp_LeverLength = 0,
 CantileverProp_LeverWidth = 1,
 CantileverProp_SpringConst = 2,
 CantileverProp_AirResonanzeFrq = 3,
 CantileverProp_AirQFactor = 4,
 CantileverProp_LiquidResonanzeFrq = 5,
 CantileverProp_LiquidQFactor = 6,

Example

 ok = objScanhead.SetCantileverPropery(2, 0.1) ' [N/m]

306 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

GetCantileverProperty

7.11.2.14 ScanHead::TriggerApproachMotorStatus

Request asynchronous data.

Syntax

scanhead.TriggerApproachMotorStatus

Remarks

This method triggers the request to receive approach motor status data.
The IsApproachMotorStatusDataValid flag will be cleared and set to true once the data
has arrived.

Example

' start trigger

objScanHead.TriggerApproachMotorStatus

' wait until async data is received

do while (objScanHead.IsApproachMotorStatusDataValid = false) : loop

MsgBox "" & objScanHead.ApproachMotorStatus

See also

Properties ScanHead::ApproachMotorStatus
Method ScanHead::IsApproachMotorStatusDataValid

7.11.2.15 ScanHead::TriggerDetectorStatus

Request asynchronous data.

Syntax

scanhead.TriggerDetectorStatus

Remarks

307Object Reference

©2022 by Nanosurf, all rights reserved

This method triggers the request to receive detector status data.
The IsDetectorStatusDataValid flag will be cleared and set to true once the data has
arrived.

Example

' start trigger

objScanHead.TriggerDetectorStatus

' wait until async data is received

do while (objScanHead.IsDetectorStatusDataValid = false) : loop

MsgBox "" & objScanHead.LaserPower & " " & objScanHead.DetectorLateralPos & " "

& objScanHead.DetectorNormalPos

See also

Properties ScanHead::DetectorLateralPos, ScanHead::DetectorNormalPos,
ScanHead::LaserPower
Method ScanHead::IsDetectorStatusDataValid

7.11.2.16 ScanHead::TriggerSensorStatus

Request asynchronous data.

Syntax

scanhead.TriggerSensorStatus

Remarks

This method triggers the request to receive sensor status data.
The IsSensorStatusDataValid flag will be cleared and set to true once the data has
arrived.

Example

' start trigger

objScanHead.TriggerSensorStatus

' wait until async data is received

do while (objScanHead.IsSensorStatusDataValid = false) : loop

' for STM use

MsgBox "" & objScanHead.STMSensorStatus

' for AFM use

MsgBox "" & objScanHead.AFMSensorStatus

308 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Properties ScanHead::AFMSensorStatus, ScanHead::STMSensorStatus
Method ScanHead::IsSensorStatusDataValid

7.12 SignalIO

The SignalIO class handles the microscope's IO subsystem.

A object pointer to this class is provided by the Application.SignalIO object property.

Table of properties for SignalIO class:

Property name Purpose

EnableUserADC0 Enable User ADC0

EnableUserADC1 Enable User ADC1

UserADC0 Read the current ADC value

UserADC1 Read the current ADC value

ExcitationMode Set the lever excitation modes

TipSignalMode Set the tip signal modes

User0CtrlMode Set the user0 control mode

User0IGain Set the user0 I gain [0 .. oo]

User0InputPol Set the user0 input pol

User0OutputFlag Set the user0 output flag

User0SetPoint Set the user0 set point

UserDAC0 User Output 0

UserDAC1 User Output 1

MonitorOut0 Defines the signal monitor on BNC Monitor 1 of the C3000

MonitorOut1 Defines the signal monitor on BNC Monitor 2 of the C3000

IsInstalled Returns if the Advanced Signal Module is installed or not.

309Object Reference

©2022 by Nanosurf, all rights reserved

7.12.1 Properties

7.12.1.1 SignalIO::EnableUserADC0

Enable or disable the UserADC0.

Syntax

signalIO.EnableUserADC0 [= state]

Argument

Paramete
r

Type Description

state BOOL Enable or disable the UserADC0.

Remarks

None

See also

None

7.12.1.2 SignalIO::EnableUserADC1

Enable or disable the UserADC1.

Syntax

signalIO.EnableUserADC1 [= state]

Argument

Paramete
r

Type Description

state BOOL Enable or disable the UserADC1.

Remarks

None

See also

None

7.12.1.3 SignalIO::ExcitationMode

Get or set the lever excitation mode.

Syntax

signalIO.ExcitationMode [= mode]

310 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument

Paramete
r

Type Description

mode LONG Defines the lever excitation mode. See modes in the table below.

Remarks

Table of lever excitation mode values and description:

State No. Name Description

0 LeverMode_InternalSource Cantilever excitation is controlled by the Nanosurf
controller itself.

1 LeverMode_ExternalSource Cantilever excitation is controlled by an external source

See also

None

7.12.1.5 SignalIO::MonitorOut0

Selects the channel mapped to monitor 0 output.

Syntax

signalIO.MonitorOut0 [= channel]

Argument

Parameter Type Description

channel Long Get or set channel

Remarks

Channel table

Value Name
0 Static Value Register
1 Test Dynamic
2 Reserved
3 Debug
4 Main Input 1
5 Main Input 2
6 Axis Position Input X
7 Axis Position Input Y
8 Axis Position Input Z
9 Extra Input 1
10 Extra Input 2
11 Extra Input 3 or 4

311Object Reference

©2022 by Nanosurf, all rights reserved

12 Approach
13 Position Output X
14 Position Output Y
15 Position Output Z
16 Mixed Output 3
17 Mixed Output 4
18 Tip Current Input
32 Z-Controller Output
33 Ramp Generator Approach
34 Ramp Generator Scan X
35 Ramp Generator Scan Y
36 Ramp Generator Scan Z
37 Ramp Generator Z-Controller
38 Ramp Generator Z-Direct
39 Ramp Generator Max-Z
40 Z-Controller Input Value
41 Z-Controller Error Value
42 Z-Controller PID Command
43 Z-Controller Sum Value
44 Z-Controller Limited Value
45 Axis Position Controller Output X
46 Axis Position Controller Output Y
47 Analyzer 1 Control Delta F
48 Analyzer 1 Control Amplitude
49 Analyzer 1 Phase
50 Analyzer 1 Amplitude
51 Analyzer 1 X
52 Analyzer 1 Y
53 Analyzer 2 Control Delta F
54 Analyzer 2 Control Amplitude
55 Analyzer 2 Phase
56 Analyzer 2 Amplitude
57 Analyzer 2 X
58 Analyzer 2 Y

See also

SignalIO::MonitorOut1

7.12.1.6 SignalIO::MonitorOut1

Selects the channel mapped to monitor 1 output.

Syntax

signalIO.MonitorOut1 [= channel]

Argument

Parameter Type Description

312 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

channel Long Get or set channel

Remarks

Channel table

Value Name
0 Static Value Register
1 Test Dynamic
2 Reserved
3 Debug
4 Main Input 1
5 Main Input 2
6 Axis Position Input X
7 Axis Position Input Y
8 Axis Position Input Z
9 Extra Input 1
10 Extra Input 2
11 Extra Input 3 or 4
12 Approach
13 Position Output X
14 Position Output Y
15 Position Output Z
16 Mixed Output 3
17 Mixed Output 4
18 Tip Current Input
32 Z-Controller Output
33 Ramp Generator Approach
34 Ramp Generator Scan X
35 Ramp Generator Scan Y
36 Ramp Generator Scan Z
37 Ramp Generator Z-Controller
38 Ramp Generator Z-Direct
39 Ramp Generator Max-Z
40 Z-Controller Input Value
41 Z-Controller Error Value
42 Z-Controller PID Command
43 Z-Controller Sum Value
44 Z-Controller Limited Value
45 Axis Position Controller Output X
46 Axis Position Controller Output Y
47 Analyzer 1 Control Delta F
48 Analyzer 1 Control Amplitude
49 Analyzer 1 Phase
50 Analyzer 1 Amplitude
51 Analyzer 1 X
52 Analyzer 1 Y
53 Analyzer 2 Control Delta F
54 Analyzer 2 Control Amplitude
55 Analyzer 2 Phase

313Object Reference

©2022 by Nanosurf, all rights reserved

56 Analyzer 2 Amplitude
57 Analyzer 2 X
58 Analyzer 2 Y

See also

SignalIO::MonitorOut0

7.12.1.7 SignalIO::TipSignalMode

Get or set the tip signal mode.

Syntax

signalIO.TipSignalMode [= mode]

Argument

Paramete
r

Type Description

mode LONG Defines the operating mode for lithography. See modes in the table below.

Remarks

Table of tip signal mode values and description:

State No. Name Description

0 TipSig_CurrentSensInput Sets the tip signal to the input current measurement
level.

1 TipSig_VoltageOutput Sets the tip signal to the measured output voltage.

2 TipSig_DirectFeedtrough Establishes a direct connection between the “Tip-
Voltage” Input BNC connector and the cantilever.

See also

None

7.12.1.8 SignalIO::User0CtrlMode

Get or set the user0 controller mode.

Syntax

signalIO.User0CtrlMode [= mode]

Argument

Paramete
r

Type Description

314 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

mode LONG Defines the user 0 controller mode. See modes in the table below.

Remarks

Table of user 0 controller operation mode values and description:

State No. Name Description

0 User0Ctrl_Off User 0 controller is off

1 User0Ctrl_On User 0 controller is on

See also

None

7.12.1.9 SignalIO::User0IGain

Returns or set the integral gain of the user 0 controller.

Syntax

signalIO.User0IGain [= gain]

Setting

Argument Type Description

gain double Defines the amplification of the accumulating sum of the difference
between input signal and set point value. Valid values are 0 ..
32767.

Remarks

The I-Gain is defining the amplification of sum of the difference between input signal
and the set point value. A higher amplification generates a faster response to a input
signal error. But a gain value too high can lead to oscillation of the z feedback loop and
amplifies also noise from the input signal.

A value of zero switch of the integral gain completely.

Example

signalIO.User0IGain = 2000

See also

Property

315Object Reference

©2022 by Nanosurf, all rights reserved

7.12.1.10 SignalIO::User0InputPol

Get or set the user0 input polarity.

Syntax

signalIO.User0InputPol [= pol]

Argument

Paramete
r

Type Description

pol LONG Defines the user0 input polarity. See modes in the table below.

Remarks

Table of user0 input polarities values and description:

State No. Name Description

0 User0InputPol_Pos Polarity is positive

1 User0InputPol_Neg Polarity is negative

See also

None

7.12.1.11 SignalIO::User0OutputFlag

Get or set the user0 output flag.

Syntax

signalIO.User0OutputFlag [= flag]

Argument

Paramete
r

Type Description

flag LONG Defines the user0 output flag. See modes in the table below.

Remarks

Table of user0 output flag values and description:

State No. Name Description

0 User0OutFlag_ Undefined

1 User0OutFlag_AddToTipVolt
age

316 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

None

7.12.1.12 SignalIO::User0SetPoint

Get or set the user0 set point.

Syntax

signalIO.User0SetPoint [= setpoint]

Argument

Paramete
r

Type Description

setpoint DOUBLE Defines the user0 set point [-1.0 .. +1.0]

Remarks

None

See also

None

7.12.1.15 SignalIO::UserDAC0

Get or set the user DAC0.

Syntax

signalIO.UserDAC0 [= value]

Argument

Paramete
r

Type Description

value DOUBLE Defines the user DAC0 value.

Remarks

None

See also

None

317Object Reference

©2022 by Nanosurf, all rights reserved

7.12.1.16 SignalIO::UserDAC1

Get or set the user DAC1.

Syntax

signalIO.UserDAC1 [= value]

Argument

Paramete
r

Type Description

value DOUBLE Defines the user DAC1 value.

Remarks

With C3000 the DAC1 value can only be set if the system.SystemStateIdleDAC1Mode
is set to SysStateIdleZ_AbsolutPos

See also

System.SystemStateIdleDAC1Mode

7.13 Spec

The Spec class handles the microscope's spectroscopy subsystem.

Spectroscopy is a very powerful function to get physical sample properties. Also sample
modification is possible on certain material.

The basic principle of spectroscopy is to modulate a output signal and measure the
reaction of another signal. This results in a 2D line chart.

This is done at one position aver the surface or at different points along a line, then a 3D
chart is the result.

A set of properties are defining the modulation output, the start and end point of the
modulation, the modulation time and may more.

For more information about spectroscopy please refer to the Nanosurf Software
Reference Manual.

A spectroscopy is first prepared by defining all the properties and the call Start.
IsMeasuring is reporting if the measurement is in process. After the measurement
StartCapture can copy the result into a image document or GetLine extract the data
values.

Lithography or any other free tip movement can be done with StartMoveTipTo and
IsMoving.

A object pointer to this class is provided by the Application.Spec object property.

318 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Table of properties for Spec class:

Property name Purpose

ActiveZController Flag to select if the Z-Controller is stopped during a spectroscopy
measurement

AddUserOutCToZStartPosition Returns or set a flag if AddUserOutCToZStartPosition is activated

AutoCapture Get or set the flag if auto capture is active

AutoRecalibrateProbe Obsolete: Use AutoRecalibrateProbeInterval instead

AutoRecalibrateProbeInterval Get or set the interval of the auto recalibration

BwdModDataPoints Number of data points taken during a backward measurement

BwdModulationMode Backward modulation mode

BwdModulationRange Backward modulation range

BwdModulationStopMode Backward modulation stop mode

BwdModulationStopValue Backward modulation stop value

BwdModulationTime Speed of the backward measurement

BwdMoveSpeed Speed of the backward measurement

BwdPauseDatapoints Number of data points taken during a backward pause

BwdPauseMode Z-Controller state during backward pause

BwdPauseTime Backward pause time

BwdSamplingRate Sampling rate of the backward measurement

CurrentModulationPhase The current modulation phase within a spectroscopy

EnableRelative In relative mode the modulation values are added to the current
output value

FwdModDatapoints Number of data points taken during a forward measurement

FwdModulationMode Forward modulation mode

FwdModulationRange Forward modulation range

FwdModulationStopMode Forward modulation stop mode

FwdModulationStopValue Forward modulation stop value

FwdModulationTime Speed of the forward measurement

FwdMoveSpeed Speed of the forward measurement

FwdPauseDatapoints Number of data points taken during a forward pause

FwdPauseMode Z-Controller state during forward pause

FwdPauseTime Forward pause time

FwdSamplingRate Sampling rate of the forward measurement

319Object Reference

©2022 by Nanosurf, all rights reserved

Min Min of dim N

Range Range of dim N

LineMin Min of line N

LinePoints Number of points of line N

LineRange Range of line N

ModulatedOutput Defines the output which is modulated during spectroscopy

ModuleLevel 0 = Standard, 1 = Advanced

PositionListCount Number of spectroscopy positions

Repetition Repetition of measurement at each modulation point

RepetitionMode Select repetition mode

Sequence Number of modulation points between From and To position

SpecEndMode Select whether the Z-Controller goes back active keeps its last Z -
position after a spectroscopy.

StartOffset Start value of the measurement

SyncOutMode Returns or selects the mode of the synchronization output

XYMoveSpeed Defines the speed of tip movement between modulation points

StartOffsetMoveSpeed Defines the speed of movement to the start offset position

Table of methods for Spec class:

Method name Purpose

Currentline Retrieve the current spectroscopy sequence number

GetLine Retrieve the data point values of a spectroscopy line

GetLine2 Retrieve the data point values of a spectroscopy line

IsCapturing Retrieve the information whether a capture is prepared or not

IsMeasuring Return True if spectroscopy sequence is in process

IsMoving Return True if a tip movement is in process

ShowWindow Controls the visibility of the imaging window

Start Starts spectroscopy sequence

StartCapture Prepare a data capture if measuring or do it immediately

StartMoveTipTo Starts a tip movement to a destination position

Stop Stops spectroscopy sequence

StopCapture Clear a prepared data capture

Pause Pauses the spectroscopy.

320 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

IsPaused Returns if the spec is paused

IsFwdModulation

IsBwdModulation

IsFwdPause Is

BwdPause

Returns if the spectroscopy process is in a certain state.

ResumeLastPoint Continue the spectroscopy after pause at last measured point

ResumeNextPoint Continue the spectroscopy after pause at next point

ClearPositionList Clear the spectroscopy position list

AddPosition Add a spectroscopy position to the list of positions

AddPosition2 Add a spectroscopy position to the list of positions

AddPositions Add a list of spectroscopy position to the list of positions

ForceBaseLinePos Set the base line to a defined value

7.13.1 Properties

7.13.1.1 Spec::ActiveZController

Returns or set a flag to select if the Z-Controller is stopped during a spectroscopy
measurement

Syntax

spec.ActiveZController [= flag]

Setting

Argument Type Description

flag Boolean Set to True to keep Z-Controller active during a spectroscopy
measurement

Remarks

This flag selects if the Z-Controller is active during a spectroscopy measurement or
not.

During normal spectroscopy measurement the Z-Controller is stopped in order to keep
the tip position fixed during the measurement. In special cases it could be of interest to
keep the Z-Controller active an measure the influence of a modulation to the z-position.

ActiveZController can only be activated if ModulatedOutput is not set to ModOut_Z.

321Object Reference

©2022 by Nanosurf, all rights reserved

If ActiveZController is activated the spectroscopy is measuring the SigTopography 1
too.

See also

Property ModulatedOutput, GetLine Method

Version info

 Software v1.4.0 or later

7.13.1.3 Spec::AutoCapture

Returns or set a flag if AutoCapture is activated.

Syntax

spec.AutoCapture [= flag]

Setting

Argument Type Description

flag boolean Set to True AutoCapture is activated and set to False AutoCapture
is deactivated.

Remarks

none

See also

7.13.1.4 Spec::AutoRecalibrateProbe

(Deprecated) Returns or set a flag to select if the auto recalibrate probe process should
be performed before every spec.

Syntax

spec.AutoRecalibrateProbe [= flag]

322 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Setting

Argument Type Description

flag Boolean Set to True is activated

Remarks

None

See also

Property AutoRecalibrateProbeInterval

7.13.1.5 Spec::AutoRecalibrateProbeInterval

Returns or set a value to select in what interval the auto recalibrate probe process
should be performed before specs.

Syntax

spec.AutoRecalibrateProbeInterval [= val]

Setting

Argument Type Description

val long 0 = Deactivated
1 = Performed before every spec
N = Performed before every nth spec

Remarks

None

See also

7.13.1.6 Spec::BwdModDatapoints

Returns or set the number of measurement points of a backward modulation

323Object Reference

©2022 by Nanosurf, all rights reserved

Syntax

spec.BwdModDatapoints [= points]

Setting

Argument Type Description

points long Defines the number of data points stored during a backward
modulation. Minimum value is 2.

Remarks

This property defines how many data points are measured during a backward
spectroscopy measurement.

See also

Property
Method Start

7.13.1.7 Spec::BwdModulationMode

Returns or set the modulation mode of the spectroscopy.

Syntax

spec.BwdModulationMode [= mode]

Setting

Argument Type Description

mode long Defines the mode during a spectroscopy. See mode numbers in
the table below.

Remarks

Table of possible modes:

State
No.

Name Description

0 SpecModMode_FixedLength Stop if the end point is reached.

324 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

1 SpecModMode_StopByValue Stop if the modulation mode criteria's are meet.

See also

Property BwdModulationStopMode BwdModulationStopValue
Method

7.13.1.8 Spec::BwdModulationRange

Returns or set the backward modulation range.

Syntax

spec.BwdModulationRange [= range]

Setting

Argument Type Description

range double Defines the range of the backward modulation. [= range] range in
m if modulation output "Z-Axis"

Remarks

none

See also

7.13.1.9 Spec::BwdModulationStopMode

Returns or set the mode of the backward modulation stop.

Syntax

spec.BwdModulationStopMode [= mode]

Setting

Argument Type Description

mode long Defines the stop mode during a spectroscopy. See mode numbers
in the table below.

Remarks

325Object Reference

©2022 by Nanosurf, all rights reserved

Table of possible modes:

State
No.

Name Description

0 SpecStopMode_IsLessThan No sync pulses are generated output is at Low-Lever.

1 SpecStopMode_IsGreaterThan At each spectroscopy sample position a High-Pulse is
generated

See also

7.13.1.10 Spec::BwdModulationStopValue

Returns or set the value of the backward modulation stop.

Syntax

spec.BwdModulationStopValue [= value]

Setting

Argument Type Description

value double Defines the stop value during a spectroscopy. [= value] value in V,
m or N

Remarks

none

See also

7.13.1.11 Spec::BwdModulationTime

Returns or set the backward modulation time.

Syntax

spec.BwdModulationTime [= time]

Setting

326 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument Type Description

time double Defines the backward modulation time. [= time] time in second

Remarks

none

See also

7.13.1.12 Spec::BwdMoveSpeed

Returns or set the backward move speed.

Syntax

spec.BwdMoveSpeed [= speed]

Setting

Argument Type Description

speed double Defines the move speed. [= speed] speed in m/s if modulation
output "Z-Axis"

Remarks

none

See also

7.13.1.13 Spec::BwdPauseDatapoints

Returns or set the number of measurement points of a backward pause

Syntax

spec.BwdPauseDatapoints [= points]

Setting

327Object Reference

©2022 by Nanosurf, all rights reserved

Argument Type Description

points long Defines the number of data points stored during a backward pause.
Minimum value is 2.

Remarks

This property defines how many data points are measured during a backward
spectroscopy pause measurement.

See also

Property
Method Start

7.13.1.14 Spec::BwdPauseMode

Returns or set the backward pause mode.

Syntax

spec.BwdPauseMode [= mode]

Setting

Argument Type Description

mode long Defines the backward pause mode. See mode numbers in the
table below.

Remarks

Table of possible modes:

State
No.

Name Description

0 SpecPauseMode_ZOff Keep last Z-Pos.

1 SpecPauseMode_ZOn Z-Controller active.

See also

328 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.13.1.15 Spec::BwdPauseTime

Returns or selects the backward pause time.

Syntax

spec.BwdPauseTime [= time]

Setting

Argument Type Description

time double Defines the backward pause time. [= time] time in second

Remarks

none

See also

7.13.1.16 Spec::BwdSamplingRate

Returns or selects the backward sampling rate.

Syntax

spec.BwdSamplingRate [= value]

Setting

Argument Type Description

value double Defines the backward sampling rate. [= value] value in Hz

Remarks

none

See also

329Object Reference

©2022 by Nanosurf, all rights reserved

7.13.1.17 Spec::CurrentModulationPhase

Returns the current modulation phase.

Syntax

spec.CurrentModulationPhase [= phase] [read only]

Setting

Argument Type Description

phase long Defines the current modulation phase. See phase numbers in the
table below.

Remarks
Phases may be skipped either because they don't exist or the time between property calls sees to
missed phases.

Table of possible phases:

State
No.

Name Description

0 No Phase Not in a specific phase, spec might not be running or
between phases right now

1 Forward Modulation In Forward Modulation phase

2 Forward Pause In Forward Pause phase

3 Backward Modulation In Backward Modulation phase

4 Backward Pause In Backward Modulation phase

See also

7.13.1.18 Spec::EnableRelative

Returns or set a flag to select if end and start values are relative values or not.

Syntax

spec.EnableRelative [= flag]

Setting

330 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument Type Description

flag Boolean Set to True is StartValue and EndValue properties should be
interpreted as relative shifts to the current value.

Remarks

This flag selects if the values in StartValue and EndValue properties are interpreted
as relative values to the current output value. A current output value is the value which
the output had prior to the spectroscopy measurment.

Relative mode is used mainly to modulate the Z-Axis because normally not the absolute
z value is interesting but the relative z value to the z-position of the topography. (e.g
sample is at 3um Z controller output position, EnableRelative = True, StartValue= -1um,
EndValue = 5um, resulting measurement is done from 2um to 8um)

See also

Property StartValue, ModulatedOutput

7.13.1.19 Spec::FwdModDatapoints

Returns or set the number of measurement points of a forward modulation

Syntax

spec.FwdModDatapoints [= points]

Setting

Argument Type Description

points long Defines the number of data points stored during a forward
modulation. Minimum value is 2.

Remarks

This property defines how many data points are measured during a forward
spectroscopy measurement.

See also

Property
Method Start

331Object Reference

©2022 by Nanosurf, all rights reserved

7.13.1.20 Spec::FwdModulationMode

Returns or set the modulation mode of the spectroscopy.

Syntax

spec.FwdModulationMode [= mode]

Setting

Argument Type Description

mode long Defines the mode during a spectroscopy. See mode numbers in
the table below.

Remarks

Table of possible modes:

State
No.

Name Description

0 SpecModMode_FixedLength Stop if the end point is reached.

1 SpecModMode_StopByValue Stop if the modulation mode criteria's are meet.

See also

Property FwdModulationStopMode FwdModulationStopValue
Method

7.13.1.21 Spec::FwdModulationRange

Returns or set the forward modulation range.

Syntax

spec.FwdModulationRange [= range]

Setting

Argument Type Description

332 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

range double Defines the range of the forward modulation. [= range] range in m if
modulation output "Z-Axis"

Remarks

none

See also

7.13.1.22 Spec::FwdModulationStopMode

Returns or set the mode of the forward modulation stop.

Syntax

spec.FwdModulationStopMode [= mode]

Setting

Argument Type Description

mode long Defines the stop mode during a spectroscopy. See mode numbers
in the table below.

Remarks

Table of possible modes:

State
No.

Name Description

0 SpecStopMode_IsLessThan No sync pulses are generated output is at Low-Lever.

1 SpecStopMode_IsGreaterThan At each spectroscopy sample position a High-Pulse is
generated

See also

7.13.1.23 Spec::FwdModulationStopValue

Returns or set the value of the forward modulation stop.

333Object Reference

©2022 by Nanosurf, all rights reserved

Syntax

spec.FwdModulationStopValue [= value]

Setting

Argument Type Description

value double Defines the stop value during a spectroscopy. [= value] value in V,
m or N

Remarks

none

See also

7.13.1.24 Spec::FwdModulationTime

Returns or set the forward modulation time.

Syntax

spec.FwdModulationTime [= time]

Setting

Argument Type Description

time double Defines the forward modulation time. [= time] time in second

Remarks

none

See also

7.13.1.25 Spec::FwdMoveSpeed

Returns or set the forward move speed.

Syntax

334 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

spec.FwdMoveSpeed [= speed]

Setting

Argument Type Description

speed double Defines the move speed. [= speed] speed in m/s if modulation
output "Z-Axis"

Remarks

none

See also

7.13.1.26 Spec::FwdPauseDatapoints

Returns or set the number of measurement points of a forward pause

Syntax

spec.FwdPauseDatapoints [= points]

Setting

Argument Type Description

points long Defines the number of data points stored during a backward pause.
Minimum value is 2.

Remarks

This property defines how many data points are measured during a forward
spectroscopy measurement.

See also

Property
Method Start

7.13.1.27 Spec::FwdPauseMode

Returns or set the forward pause mode.

335Object Reference

©2022 by Nanosurf, all rights reserved

Syntax

spec.FwdPauseMode [= mode]

Setting

Argument Type Description

mode long Defines the forward pause mode. See mode numbers in the table
below.

Remarks

Table of possible modes:

State
No.

Name Description

0 SpecPauseMode_ZOff Keep last Z-Pos.

1 SpecPauseMode_ZOn Z-Controller active.

See also

7.13.1.28 Spec::FwdPauseTime

Returns or selects the forward pause time.

Syntax

spec.FwdPauseTime [= time]

Setting

Argument Type Description

time double Defines the forward pause time. [= time] time in second

Remarks

none

See also

336 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.13.1.29 Spec::FwdSamplingRate

Returns or selects the forward sampling rate.

Syntax

spec.FwdSamplingRate [= value]

Setting

Argument Type Description

value double Defines the forward sampling rate. [= value] value in Hz

Remarks

none

See also

7.13.1.32 Spec::LineMin

Return or set the min value for the spectroscopy line

Syntax

spec.LineMin(group, channel, line) [= min]

Argument

Paramete
r

Type Description

group long number of group

channel long number of channel

line long line number

Remarks

none

337Object Reference

©2022 by Nanosurf, all rights reserved

See also

Property LinePoints, LineRange
Method GetLine, GetLine2

7.13.1.33 Spec::LinePoints

Return or set the points value for the spectroscopy line

Syntax

spec.LinePoints(group, channel, line) [= points]

Argument

Paramete
r

Type Description

group long number of group

channel long number of channel

line long line number

Remarks

none

See also

Property LineMin, LineRange
Method GetLine, GetLine2

7.13.1.34 Spec::LineRange

Return or set the range value for the spectroscopy line

Syntax

spec.LineRange(group, channel, line) [= range]

Argument

Paramete
r

Type Description

group long number of group

338 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

channel long number of channel

line long line number

Remarks

none

See also

Property LineMin, LinePoints
Method GetLine, GetLine2

7.13.1.35 Spec::ModulatedOutput

Returns or selects the output of modulation.

Syntax

spec.ModulatedOutput [= output]

Setting

Argument Type Description

output long Defines the output signal which is modulated. See outputs in the
table below.

Remarks

The spectroscopy modulation can be at different signal output. Which output is used is
defined by this property.

Table of outputs for spectroscopy modulation :

Output
No.

Name Description

0 ModOut_Z Z-Axis is modulated

1 ModOut_TipVoltage The Tip Voltage output is modulated

2 ModOut_UserOut1 The User Output 1 is modulated

3 ModOut_UserOut2 The User Output 2 is modulated

See also

Method Start

339Object Reference

©2022 by Nanosurf, all rights reserved

Version info

 More outputs defined in software v1.4.0 or later

7.13.1.36 Spec::ModuleLevel

Returns or selects the mode of the synchronization output.

Syntax

spec.ModuleLevel [= Level]

Setting

Argument Type Description

level long Defines the spectroscopy level.

Remarks

Table of possible modes:

State
No.

Name Description

0 Standard mode Standard set of spectroscopy functionality.

1 Advanced mode Advanced set of spectroscopy functionality. To use the
advanced mode a key has to be purchased.

See also

7.13.1.37 Spec::PositionListCount

Returns the PositionListCount.

Syntax

spec.PositionListCount [= count]

Setting

Argument Type Description

count Long read only

Remarks

340 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

none

See also

7.13.1.38 Spec::Repetition

Returns or set the number of modulation cycles during a measurement.

Syntax

spec.Repetition [= count]

Setting

Argument Type Description

count long Defines the cycles of modulation per measurement. Minimum
value is 1.

Remarks

This property defines how many modulations are repeated per spectroscopy
measurement.

See also

7.13.1.39 Spec::RepetitionMode

Returns or selects the repetition mode.

Syntax

spec.RepetitionMode [= mode]

Setting

Argument Type Description

mode long Defines the mode that is active. See outputs in the table below.

Remarks

341Object Reference

©2022 by Nanosurf, all rights reserved

Table of modes:

Output
No.

Name Description

0 RepetitionMode_List Repeat all N points X times. 1 file per list.

1 RepetitionMode_Position Repeat each position X times. 1 file per position.

See also

Method Repetition

7.13.1.40 Spec::Sequence

Returns or set the number of xy-points per spectroscopy sequence.

Syntax

spec.Sequence [= points]

Setting

Argument Type Description

points long Defines the number of xy-positions per spectroscopy sequence.
Minimum value is 1.

Remarks

A complete spectroscopy is a sequence of measurements at different position over the
sample.
The measurement positions are spread continuously along a line defined by the four
properties.

See also

Property
Method Spec::Start, Spec::AddPosition, Spec::ClearPositionList

7.13.1.41 Spec::SpecEndMode

Returns or set the spectroscopy end mode.

Syntax

342 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

spec.SpecEndMode [= mode]

Setting

Argument Type Description

mode long Defines the spectroscopy end mode. See mode numbers in the
table below.

Remarks

Table of possible modes:

State
No.

Name Description

0 SpecEndMode_StayLastZPos Keep last Z-Pos.

1 SpecEndMode_Approached Z-Controller active.

See also

7.13.1.42 Spec::StartOffset

Returns or set the start value of the measurement

Syntax

spec.StartOffset [= value]

Setting

Argument Type Description

value double Defines the start value of the spectroscopy modulation.

Remarks

none

See also

343Object Reference

©2022 by Nanosurf, all rights reserved

7.13.1.44 Spec::SyncOutMode

Returns or selects the mode of the synchronization output.

Syntax

spec.SyncOutMode [= mode]

Setting

Argument Type Description

mode long Defines the signal generated at the synchronization output during a
spectroscopy. See mode numbers in the table below.

Remarks

During a spectroscopy modulation different synchronisation signal can be generated at
the sync output.
The sync pulse durations is about 4us.

Table of possible modes:

State
No.

Name Description

0 SyncOut_NoSync No sync pulses are generated output is at Low-Lever.

1 SyncOut_PulsSample At each spectroscopy sample position a High-Pulse is
generated

2 SyncOut_PulsBegin At the beginning of spectroscopy measurement a High-
Pulse is generated

3 SyncOut_PulsEnd At the end of spectroscopy measurement a High-Pulse
is generated

4 SyncOut_PulsBeginAndEn
d

At the beginning and the end of spectroscopy
measurement a High-Pulse is generated

5 SyncOut_LevelBeginToEnd A High level is generated during the spectroscopy
measurement.

See also

Description of Sync-Output in the Operating Manual

Version info

 Software v1.4.0 or later

344 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.13.2 Methods

7.13.2.1 Spec::AddPosition

Add a spectroscopy position to the list of positions.

Syntax

spec.AddPosition(x, y, z)

Result

Paramete
r

Type Description

x double X-Axis component of the destination position. Unit in meter [m]

y double Y-Axis component of the destination position. Unit in meter [m]

z double Z-Axis component of the destination position. Unit in meter [m]

Remarks

This method adds a spectroscopy position to the position list. The coordinate system of
the destination position is the scanner coordinate system. I.e. the position (0,0,0) is the
center position of the scanner.

Example

' pos(x,y,z) = (1um,2um,0um)

objSpec.AddPosition 1e-6,2e-6,0

See also

Method ClearPositionList,

7.13.2.4 Spec::ClearPositionList

Clear the spectroscopy position list.

Syntax

spec.ClearPositionList

Result

none

345Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

This method clears the spectroscopy position list.

Example

' clear position list

objSpec.ClearPositionList

See also

Method AddPosition

7.13.2.5 Spec::Currentline

Returns the number of the last measured spectroscopy line.

Syntax

line = spec.Currentline

Result

Result Type Description

line long The last measured spectroscopy line number.

Remarks

This method is returning the number of the last measured spectroscopy line.
A complete spectroscopy sequence is composed of spectroscopy data lines. At each
Sequence point a spectroscopy data line is stored. A spectroscopy data line is
composed of two spectroscopy modulation data array. One for ForwardSpectroscopy
and one for BackwardSpectroscopy. Line zero is the first sequence data line and the
last has number Sequence - 1.

This method can be used to monitor which spectroscopy lines is currently measured
during a spectroscopy process.

See also

Property Sequence
Method Start, GetLine, IsMeasuring

346 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.13.2.7 Spec::GetLine

Returns a string of data values of a spectroscopy data line.

Syntax

array = spec.GetLine(group,channel,specine,filter,conversion)

Argument

Paramete
r

Type Description

group long number of group

channel long number of channel

specline long spec line number

filter long index of mathematical filter to be used

conversion long index of conversion type of results

Result

Result Type Description

array String Character string with comma separated values of all the values of
the scan line

Remarks

This method returns a string of data values of a spectroscopy data line. Any signal of a
measured spectroscopy sequence can be extracted and the data values can be
processed with the same filters as available for the user in the "Chart Toolbar". The
result is in a comma separated string in different numerical formats.

The first two arguments group and channel selects the matrix of a specific signal.

Table of group numbers:

Group
No.

Group Name Description

0 Group_ForwardSpec Selects signal channels of forward spectroscopy
modulation

1 Group_BackwardSpec Selects signal channels of backward spectroscopy
modulation

2 Group_ForwardSpecPaus
e

Selects signal channels of forward pause spectroscopy

3 Group_BackwardSpecPa Selects signal channels of backward pause spectroscopy

347Object Reference

©2022 by Nanosurf, all rights reserved

use

In each group there are different signal channels. To get the values of a specific signal
one has to know the channel number. If a certain channel is available in a
measurement depends on the active operating mode during the measurement.

Table of channel numbers:

Channel
No.

Signal Name Description

0 SigDeflection Static cantilever deflection signal

1 SigTopography Z-Topography signal

2 SigAmplitude Cantilever vibrating amplitude signal

3 SigPhase Cantilever phase shift signal

4 SigUser User's defined ADC input signal

The argument specline is the number of the sequence data line to extract. 0 is the first
sequnece line and property Sequence -1 the last one.

The argument filter and conversion defines the data processing algorithm and
formating to be used.
See parameter tables at Data.GetLine Method.

Example

' get deflection of forward spec line of sequence 5 with plane fit filter active

and in [m]

specline = objSpec.GetLine(0,0,5,2,1)

datararray = Split(specline,",")

' get user input signal of current scan line, no filter as 16bit values

specline = objSpec.GetLine(0,5,objSpec.Currentline,0,0)

See also

Property Sequence
Method Start, Currentline

7.13.2.8 Spec::GetLine2

Returns a VARIANT array of data values of a spectroscopy data line.

Syntax

array = spec.GetLine2(group, channel, specline, filter, conversion)

348 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument

Paramete
r

Type Description

group long number of group

channel long number of channel

specline long spec line number

filter long index of mathematical filter to be used

conversion long index of conversion type of results

Result

Result Type Description

array VARIANT VARIANT array with values of all the values of the spec line

Remarks

This method returns a string of data values of a spectroscopy data line. Any signal of a
measured spectroscopy sequence can be extracted and the data values can be
processed with the same filters as available for the user in the "Chart Toolbar". The
result is in a comma separated string in different numerical formats.

The first two arguments group and channel selects the matrix of a specific signal.

Table of group numbers:

Group
No.

Group Name Description

0 Group_ForwardSpec Selects signal channels of forward spectroscopy
modulation

1 Group_BackwardSpec Selects signal channels of backward spectroscopy
modulation

2 Group_ForwardSpecPaus
e

Selects signal channels of forward pause spectroscopy

3 Group_BackwardSpecPa
use

Selects signal channels of backward pause spectroscopy

In each group there are different signal channels. To get the values of a specific signal
one has to know the channel number. If a certain channel is available in a
measurement depends on the active operating mode during the measurement.

Table of channel numbers:

349Object Reference

©2022 by Nanosurf, all rights reserved

Channel
No.

Signal Name Description

0 SigDeflection Static cantilever deflection signal

1 SigTopography Z-Topography signal

2 SigAmplitude Cantilever vibrating amplitude signal

3 SigPhase Cantilever phase shift signal

4 SigUser User's defined ADC input signal

The argument specline is the number of the sequence data line to extract. 0 is the first
sequnece line and property Sequence -1 the last one.

The argument filter and conversion defines the data processing algorithm and
formating to be used.
See parameter tables at Data.GetLine Method.

Example

' get deflection of forward spec line of sequence 5 with plane fit filter active

and in [m]

specline = objSpec.GetLine(0,0,5,2,1)

datararray = Split(specline,",")

' get user input signal of current scan line, no filter as 16bit values

specline = objSpec.GetLine(0,5,objSpec.Currentline,0,0)

See also

Property Sequence
Method Start, Currentline

7.13.2.9 Spec::IsCapturing

Returns if a capture is pending or not.

Syntax

flag = spec.IsCapturing

Result

Result Type Description

flag Boolean Returns True if a capture is pending

Remarks

350 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

This method is returing True if a capture is pending.

Example

If objSpec.IsCapturing Then

 objSpec.StopCapture

End If

See also

Method StartCapture, StopCapture

7.13.2.10 Spec::IsMeasuring

Returns if a spectroscopy measurement is in process or not.

Syntax

flag = spec.IsMeasuring

Result

Result Type Description

flag Boolean Returns True if a spectroscopy measurement is in process

Remarks

This method is returning True if a spectroscopy measurement is currently running.

Example

' measure

objSpec.Start

Do While objSpec.IsMeasuring : Loop

' copy image date

objSpec.StartCapture

See also

Method Start

7.13.2.12 Spec::IsMoving

Returns if a tip movement by StartMoveTipTo is in process or not.

Syntax

351Object Reference

©2022 by Nanosurf, all rights reserved

flag = spec.IsMoving

Result

Result Type Description

flag Boolean Returns True if a tip movement is in process

Remarks

This method is returning True if a tip movement started by StartMoveTipTo is currently
running.

If fast tip movement is needed by script control please make sure that the
StatusReadDelay property of the Application class is set to zero!

Example

' move tip to pos(x,y,z) = (1um,2um,0um)

objApp.StatusReadDelay = 0.0

objSpec.StartMoveTipTo 1e-6,2e-6,0

Do While objSpec.IsMoving : Loop

See also

Method StartMoveTipTo, Property objApp.StatusReadDelay

7.13.2.16 Spec::ShowWindow

Defines the display style of the Spectroscopy window.

Syntax

spec.ShowWindow(style)

Arguments

Argument Type Description

style short Visibility style number

Result

None.

Remarks

352 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The ShowWindow method sets the visibility state of the window.

Available styles see Doc.ShowWindow Method

Example

objSpec.ShowWindow(0) ' hide the window

See also

 None.

Version info

 Software v1.4.0 or later

7.13.2.17 Spec::Start

Starts spectroscopy sequence.

Syntax

spec.Start

Remarks

This method is starting the spectroscopy sequence. It can be aborted at the end of a
modulation by method Stop. If a spectroscopy measurement is running read method
IsMeasuring.

The modulation output, the start and end values and all the other properties of
spectroscopy class should be predefined prior the start but some can be changed also
during spectroscopy. A call to StartCapture creates a new document after the
spectroscopy measurement is finished.

During a spectroscopy modulation the z feedback controller is set to
Loopmode_Freeze mode.

Please use the command AddPosition to add a position where a spectroscopy measurment

should take place. Use the command ClearPositionList to clear the position list.

Example

' do spec

objSpec.Start

Do While objSpec.IsMeasuring : Loop

353Object Reference

©2022 by Nanosurf, all rights reserved

See also

Method IsMeasuring
Class OperatingMode, ZController

7.13.2.19 Spec::StartCapture

Create a new image document.

Syntax

spec.StartCapture

Remarks

This method copies the measured spectroscopy data to a new image document. If a
spectroscopy measurment process is running at the time StartCapture is called the
copy is delayed until the sequence is fully measured. A pending capture can be called
with StopCapture. If a capture is pending read method IsCapturing.

Example

' start spec

objSpec.Start

' prepare image copy

objScan.StartCapture

' wait until copy is taken at end of sequnece

Do While objSpec.IsCapturing : Loop

objApp.SaveDocument("myspec.nid")

See also

Method StopCapture, IsCapturing
Method Application.SaveDocument

7.13.2.20 Spec::StartMoveTipTo

Move the tip from the current position to a destination coordinate.

Syntax

spec.StartMoveTipTo(x,y,z)

354 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument

Paramete
r

Type Description

x double X-Axis component of the destination position. Unit in meter [m]

y double Y-Axis component of the destination position. Unit in meter [m]

z double Z-Axis component of the destination position. Unit in meter [m]

Remarks

This method moves the tip from the current position to a target position. The position is
defined in the scanners physical reference coordinate system. The move speed is
approximately defined the factor

Move speed = objScan.ImageWidth / objScan.Scantime

Attention: If the Z controller is in Loopmode_Run then the Z-Position is never exactly
the value of the z argument but a superimpose of the Z-Argument and the z-feedback
output signal.

The method only starts the movement and return immediately. To wait until the
movement is finished read IsMoving method.

If fast tip movement is needed by script control please make sure that the
StatusReadDelay property of the Application class is set to zero!

For more information about the physical reference coordinate system please refer to
the Nanosurf Software Reference Manual.

Example

' Simple lithography.

' -------------------

' Scratch a square and image afterward

normalforce = 30e-9 'N

scratchforce = 200e-9 'N

 ' prepare operating mode

objApp.StatusReadDelay = 0.0 ' No delay to get full writing speed

objOpMode.OperatingMode = 1 ' Static Force mode

objOpMode.Cantilever = 0 ' CONTR Lever

' move to start point

objZCtrl.SetPoint = normalforce

objSpec.StartMoveTipTo -5e-6,-5e-6,0

Do While objSpec.IsMoving : Loop

' scratch the square

objZCtrl.SetPoint = scratchforce

355Object Reference

©2022 by Nanosurf, all rights reserved

objSpec.StartMoveTipTo 5e-6,-5e-6,0

Do While objSpec.IsMoving : Loop

objSpec.StartMoveTipTo 5e-6,5e-6,0

Do While objSpec.IsMoving : Loop

objSpec.StartMoveTipTo -5e-6,5e-6,0

Do While objSpec.IsMoving : Loop

objSpec.StartMoveTipTo -5e-6,-5e-6,0

Do While objSpec.IsMoving : Loop

' release scratch a square

objZCtrl.SetPoint = normalforce

' image

objScan.ImageSize 30e-6,30e-6

objScan.StartFrameUp

Do While objScan.IsScanning : Loop

See also

Method IsMoving, Property objApp.StatusReadDelay

7.13.2.21 Spec::Stop

Stops spectroscopy measurement immediately.

Syntax

spec.Stop

Remarks

This method stops any spectroscopy process immediately after the current modulation
is finished.
A possible pending capture flag is also cleared and no document is created.

Example

' start scan

objSpec.Start

' do something else ...

' finish immediately

objSpec.Stop

See also

356 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method Start, StartCapture

7.13.2.22 Spec::StopCapture

Cancel a pending capture

Syntax

spec.StopCapture

Remarks

This method cancel a pending capture. If a capture is pending read method
IsCapturing.

Example

' start sequence

objSpec.Start

' prepare data copy

objScan.StartCapture

' do something

If objSpec.IsCapturing Then

 objSpec.StopCapture

End If

See also

Method StartCapture, IsCapturing

7.14 SPMCtrlDataStream

The SPM control data stream handles access to the SPM data stream subsystem.

A object pointer to this class is provided by the SPMCtrlManager.DataStream object
property.

Table of properties for the SPMCtrlDataStream class:

Property name Purpose

357Object Reference

©2022 by Nanosurf, all rights reserved

MonitoringChannelMap Returns a object pointer to the single LogicalUnit class object

MonitoringChannelUnits Returns a object pointer to the single DataBuffer class object

Table of methods for the SPMCtrlDataStream class:

Method name Purpose

ActivateSocketStreamingInterface Activates the socket streaming interface on given port
number

7.14.1 Methods

7.14.1.1 SPMCtrlDataStream::ActivateSocketStreamingInterface

Activates the socket streaming interface.

Syntax

objSPMCtrlDataStream.ActivateSocketStreamingInterface(nPort)

Argument

Paramete
r

Type Description

nPort long Socket port to use for socket server (10000<nPort<60000) or 0

Remarks

This method opens a socket. The port must be free for this to be successful.
0 will deactivate the socket streaming interface.

Example

' Activate the socket interface on port 30003

objSPMCtrlDataStream.ActivateSocketStreamingInterface = "30003"

' Deactivate the socket interface

objSPMCtrlDataStream.ActivateSocketStreamingInterface = "0"

Version info

 Software v3.8.0.0 or later

358 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.14.2 Properties

7.14.2.1 SPMCtrlDataStream::MonitoringChannelMap

Returns or sets a variant array of integers with the channel id's in it.

Syntax

objSPMCtrlDataStream.MonitoringChannelMap [= flag]

Setting

Argument Type Description

flag VARIANT
long array

Array of integers of channel id's

Remarks

Channel Id's:

// CI_Deflection = 0,

// CI_Friction = 1, // Lateral

// CI_UserIn3 = 2, // User In A / Tip Current

// CI_UserIn2 = 3, // User In B

// CI_UserIn1 = 4,

// CI_Amplitude_Alyzr1 = 5,

// CI_Phase_Alyzr1 = 6,

// CI_LockInX_Alyzr1 = 7,

// CI_LockInY_Alyzr1 = 8,

// CI_AmplitudeCtrlOut_Alyzr1 = 9,

// CI_PhaseCtrlOut_Alyzr1 = 10,

// CI_Amplitude_Alyzr2 = 11,

// CI_Phase_Alyzr2 = 12,

// CI_LockInX_Alyzr2 = 13,

// CI_LockInY_Alyzr2 = 14,

// CI_AmplitudeCtrlOut_Alyzr2 = 15,

// CI_PhaseCtrlOut_Alyzr2 = 16,

// CI_ZAxisSensor = 17,

// CI_XAxis = 18,

// CI_YAxis = 19,

// CI_ZAxis = 20,

// CI_UserOutC = 21,

// CI_TipVoltageOutput = 22,

// CI_ApproachMotor = 23,

// CI_XAxisSensor = 24,

// CI_YAxisSensor = 25,

See also

Property MonitoringChannelUnits

359Object Reference

©2022 by Nanosurf, all rights reserved

Version info

 Software v3.5.0.0 or later

7.14.2.2 SPMCtrlDataStream::MonitoringChannelUnits

Returns a variant array of strings with the unit names in it. This property is read only.

Syntax

objSPMCtrlDataStream.MonitoringChannelUnits [= flag] [read only]

Setting

Argument Type Description

flag VARIANT
string
array

Array of strings of units names

Remarks

The monitoring channel map determines the layout of the units contained in the array.

See also

Property MonitoringChannelMap

Version info

 Software v3.5.0.0 or later

7.15 SPMCtrlManager

The SPM control manager handles access to the SPM subsystem.

A object pointer to this class is provided by the Application.SPMCtrlManager object
property.

Table of properties for the SPMCtrlManager class:

Property name Purpose

LogicalUnit Returns a object pointer to the single LogicalUnit class object

360 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

DataBuffer Returns a object pointer to the single DataBuffer class object

DataStream Returns a object pointer to the single DataStream class object

MacroCmd Returns a object pointer to the single MacroCmd class object

7.15.1 Properties

7.15.1.1 SPMCtrlManager::DataStream

Returns a dispatch pointer to the sub class DataStream. This property is read only.

Syntax

application.DataStream [read only]

Result

The DataStream property is returning a pointer to the IDispatch interface of the
SPMCtrlDataStream object.

Remarks

Only one single instance exists of the SPMCtrlDataStream object. All successive read
of this property will return the same IDispatch pointer.

It is good practice to free the object reference after usage. See the example on how to
do this.

Example

' create object

Dim objApp : Set objApp = Nanosurf_C3000.Application

Dim objSPMCtrlManager : Set objSPMCtrlManager = objApp.SPMCtrlManager

Dim objSPMDataStream : Set objSPMDataStream = objSPMCtrlManager.DataStream

' do something with the object

' clean up

objSPMDataStream = nul : Set objSPMDataStream = Nothing

objSPMCtrlManager = nul : Set objSPMCtrlManager = Nothing

objApp = nul : Set objApp = Nothing

See also

Class SPMCtrlDataStream

361Object Reference

©2022 by Nanosurf, all rights reserved

7.16 Stage

The Stage class handles the stage subsystem.

A object pointer to this class is provided by the Application.Stage object property.

Table of properties for the Stage class:

Property name Purpose

HasInstance Says if there is a stage instance

HasPositionReached Says if the last move has reached its destination

IsReferenced Says if the stage is referenced

Table of methods for the Stage class:

Method name Purpose

AppendToMoveTransaction Append move operation to transaction

ClearMoveTransaction Clear everything from move transaction

CloseInstance Close stage instance

CommitMoveTransaction Commit move transaction

EmergencyStop Stops all stage movement with emergency stop
configuration

GetAxisName Returns the name of given axis

GetAxisPosition Returns the position orthogonal corrected of given axis

GetAxisPositionMonitoring Returns the position orthogonal corrected & monitor
inverted of given axis

GetAxisRange Returns possible range of the axis

GetAxisUnit Returns the unit of given axis

GetAxisValue Returns the value (position) of given axis

GetCurrentAxisZeroPosition Returns the given axis zero position

GetSpeedPercent Returns the current speed percent value

GetState Returns the current stage state

GetTransactionCommitCount Returns the number of committed transactions

Lock Locks stage if idle

ReferenceSearch Performs a reference search

SetAxisZero Sets the current position of axis zero (no move)

SetSpeedPercent Sets the speed percent value

362 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

SetTransactionDependentApproachMove Sets the transaction to apply the dependent approach
move

SetTransactionNoOrthoCorrection Sets the transaction to not apply orthogonal corrections

SetTransactionNoSecureMove Sets the transaction to not perform secure moves

SetupInstance Creates a stage instance from a configuration file

SetZero Sets the current position zero (no move)

SpecialOperationAxis Performs a special operation on an axis

SpecialOperationController Performs a special operation on a controller

SpecialOperationView Performs a special operation on the stage view

Stop Stops all stage movement

Unlock Unlocks the stage if locked

7.16.1 Properties

7.16.1.1 Stage::HasInstance

Returns a flag which says if there is an stage instance or not. This property is read only.

Syntax

objStage.HasInstance [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if there is a stage instance

Remarks

This flag concerns the main stage sub system instance. There can only be one such
instance. This flag must be true for most other other properties and methods to be
used. If it is not, an instance can be setup with SetupInstance.

See also

Method SetupInstance, CloseInstance

Version info

 Software v3.5.0.0 or later

363Object Reference

©2022 by Nanosurf, all rights reserved

7.16.1.2 Stage::HasPositionReached

Returns a flag which says if the last move action has reached the specified position or
not. This property is read only.

Syntax

objStage.HasPositionReached [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if the position was reached

Remarks

This flag says if the stage is referenced. This means that the absolute physical position
is known. This flag must be True for most movement actions to work properly. This flag
can only be checked after a move. During a move the value is undefined.

See also

Method CommitMoveTransaction, AppendToMoveTransaction, Stop, EmergencyStop

Version info

 Software v3.5.0.0 or later

7.16.1.3 Stage::IsReferenced

Returns a flag which says if the stage is referenced or not. This property is read only.

Syntax

objStage.IsReferenced [= flag] [read only]

Setting

Argument Type Description

flag Boolean True if the stage is referenced

Remarks

364 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

This flag says if the stage is referenced. This means that the absolute physical position
is known. This flag must be true for most movement actions to work properly.

See also

Method ReferenceSearch, GetStage

Version info

 Software v3.5.0.0 or later

7.16.2 Methods

7.16.2.1 Stage::AppendToMoveTransaction

This method appends a move command to the move transaction.

Syntax

objStage.AppendToMoveTransaction(nAxisId, fNewValue, bRelativeValue)

Argument

Parameter Type Description

nAxisId int32 Virtual axis identifier

fNewValue double Position to move to

bRelativeVa
lue

boolean Says if fNewValue is relative to current position or absolute

Result

None

Remarks

The AppendToMoveTransaction method adds a move command to the move
transaction. If a move transaction has multiple move commands for the same axis, the
last one counts (even if this should be avoided anyway). The transaction list can be
cleared with ClearMoveTransaction.

See also

Method ClearMoveTransaction, CommitMoveTransaction

365Object Reference

©2022 by Nanosurf, all rights reserved

Version info

 Software v3.5.0.0 or later

7.16.2.2 Stage::ClearMoveTransaction

This method clears the current move transaction of all entries.

Syntax

objStage.ClearMoveTransaction()

Argument

None

Result

None

Remarks

The ClearMoveTransaction method clears the current move transaction of all entries.
Everything added with AppendToMoveTransaction is lost.

See also

Method AppendToMoveTransaction, CommitMoveTransaction

Version info

 Software v3.5.0.0 or later

7.16.2.3 Stage::CloseInstance

This method closes down the stage sub system instance.

Syntax

objStage.CloseInstance()

Argument

None

Result

None

366 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

The CloseInstance method closes down the stage sub system instance. If there is no
instance this is noop.

See also

Method SetupInstance, Property HasInstance

Version info

 Software v3.5.0.0 or later

7.16.2.4 Stage::CommitMoveTransaction

This method commits all appended move commands.

Syntax

objStage.CommitMoveTransaction()

Argument

None

Result

None

Remarks

The CommitMoveTransaction method commits all appended move commands. The
appended move commands are not cleared automatically. Depending on the stage
hardware setup and configuration, all move commands are started as concurrent as
possible. If the move transaction is empty this is noop.

See also

Method AppendToMoveTransaction, ClearMoveTransaction

Version info

 Software v3.5.0.0 or later

7.16.2.5 Stage::EmergencyStop

This method stops all stage movement with emergency parameters.

Syntax

367Object Reference

©2022 by Nanosurf, all rights reserved

objStage.EmergencyStop()

Argument

None

Result

None

Remarks

The EmergencyStop method configures special parameters and stops all stage axis
in their movement. Depending on the stage hardware and configuration a stop may
take a long time. To stop as fast as possible an emergency stop configuration is
applied before stopping.

See also

Method Stop, CommitMoveTransaction

Version info

 Software v3.5.0.0 or later

7.16.2.6 Stage::GetAxisName

This method returns the axis name of given axis.

Syntax

retval = objStage.GetAxisName(nAxisId)

Argument

Paramete
r

Type Description

nAxisId int32 Virtual axis id

Result

Result Type Description

retval String Display name of axis

Remarks

368 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The GetAxisName method returns the display name of the given virtual axis. This
value is directly read from the configuration file.

See also

Method GetAxisUnit, GetAxisValue

Version info

 Software v3.5.0.0 or later

7.16.2.7 Stage::GetAxisPosition

This method returns the axis position with orthogonal correction of given axis.

Syntax

retval = objStage.GetAxisPosition(nAxisId)

Argument

Paramete
r

Type Description

nAxisId int32 Virtual axis id

Result

Result Type Description

retval double Position of axis

Remarks

The GetAxisPosition method returns the value of the given virtual axis with the
orthogonal correction calculated in. This value is read from the controller or cache. It is
not monitor inverted. For this see the GetAxisPositionMonitoring method.

See also

Method GetAxisName, GetAxisUnit, GetAxisValue, GetAxisPositionMonitoring

Version info

 Software v3.8.5.6 or later

369Object Reference

©2022 by Nanosurf, all rights reserved

7.16.2.8 Stage::GetAxisPositionMonitoring

This method returns the axis position with orthogonal correction and monitor inversion of
given axis.

Syntax

retval = objStage.GetAxisPositionMonitoring(nAxisId)

Argument

Paramete
r

Type Description

nAxisId int32 Virtual axis id

Result

Result Type Description

retval double Position of axis

Remarks

The GetAxisPositionMonitoring method returns the value of the given virtual axis with
the orthogonal correction calculated in and monitor inversion. This value is read from
the controller or cache.

See also

Method GetAxisName, GetAxisUnit, GetAxisValue, GetAxisPosition

Version info

 Software v3.8.5.6 or later

7.16.2.9 Stage::GetAxisRange

This method returns the axis travel range of given axis.

Syntax

retval = objStage.GetAxisRange(nAxisId)

Argument

Paramete
r

Type Description

370 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

nAxisId int32 Virtual axis id

Result

Result Type Description

retval double Range of axis

Remarks

The GetAxisRange method returns the range (upper limit - lower limit) of the given
virtual axis. This value is read from the configuration (stagex).

See also

Method GetAxisValue, GetCurrentAxisZeroPosition

Version info

 Software v3.8.2.0 or later

7.16.2.10 Stage::GetAxisUnit

This method returns the axis unit of given axis.

Syntax

retval = objStage.GetAxisUnit(nAxisId)

Argument

Paramete
r

Type Description

nAxisId int32 Virtual axis id

Result

Result Type Description

retval String Display unit of axis

Remarks

The GetAxisUnit method returns the display unit of the given virtual axis. This value is
derived from the axis type.

See also

371Object Reference

©2022 by Nanosurf, all rights reserved

Method GetAxisName, GetAxisValue

Version info

 Software v3.5.0.0 or later

7.16.2.11 Stage::GetAxisValue

This method returns the axis value of given axis.

Syntax

retval = objStage.GetAxisValue(nAxisId)

Argument

Paramete
r

Type Description

nAxisId int32 Virtual axis id

Result

Result Type Description

retval double Value of axis

Remarks

The GetAxisValue method returns the value of the given virtual axis. This value is read
from the controller or cache. It is not orthogonal corrected and not monitor inverted. For
those see the GetAxisPosition & GetAxisPositionMonitoring methods.

See also

Method GetAxisName, GetAxisUnit, GetAxisPosition, GetAxisPositionMonitoring

Version info

 Software v3.5.0.0 or later

7.16.2.12 Stage::GetCurrentAxisZeroPosition

This method returns the current axis zero position (offset) of given axis.

Syntax

372 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

retval = objStage.GetCurrentAxisZeroPosition(nAxisId)

Argument

Paramete
r

Type Description

nAxisId int32 Virtual axis id

Result

Result Type Description

retval double Zero position (offset) of axis

Remarks

The GetCurrentAxisZeroPosition method returns the zero position of the given virtual
axis. This value is read from the virtual axis and can change every time the axis is
referenced or the axes are zeroed.

See also

Method GetAxisValue, GetAxisRange

Version info

 Software v3.8.2.0 or later

7.16.2.13 Stage::GetSpeedPercent

This method returns the global stage speed in percent.

Syntax

retval = objStage.GetSpeedPercent()

Argument

None

Result

Result Type Description

retval int32 Global stage speed in percent

Remarks

373Object Reference

©2022 by Nanosurf, all rights reserved

The GetSpeedPercent method returns the global stage speed in percent.

See also

Method SetSpeedPercent, CommitMoveTransaction

Version info

 Software v3.5.0.0 or later

7.16.2.14 Stage::GetState

This method returns the stage state.

Syntax

retval = objStage.GetState()

Argument

None

Result

Result Type Description

retval int32 Current global stage state

Remarks

The GetAxisValue method returns the current global stage state.
Table of possible states:

State # Name Description

1 IdleUnreferenced In idle state without absolute physical reference.

2 Idle In idle state with absolute physical reference.

3 Move Stage is moving. Either a manual move, a "move to" or a
reference search.

See also
 -

Version info

 Software v3.5.0.0 or later

374 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.16.2.15 Stage::GetTransactionCommitCount

This method returns the committed transaction count.

Syntax

retval = objStage.GetTransactionCommitCount()

Argument

None

Result

Result Type Description

retval int32 Transaction commit count

Remarks

The GetTransactionCommitCount method returns the committed transaction count.
This count increases with every move commit as soon as the state changes from idle
to non idle. GetState and this count are atomic and thread safe.

See also

Method_CommitMoveTransaction, GetState

Version info

 Software v3.8.2.0 or later

7.16.2.16 Stage::Lock

This method locks the stage when idle.

Syntax

objStage.Lock()

Argument

None

Result

None

Remarks

375Object Reference

©2022 by Nanosurf, all rights reserved

The Lock method locks the stage system when idle. Unlock is needed to use the stage
system again. No other action is possible.

See also

Method Unlock

Version info

 Software v3.8.8.3 or later

7.16.2.17 Stage::ReferenceSearch

This method starts a reference search.

Syntax

objStage.ReferenceSearch()

Argument

None

Result

None

Remarks

The ReferenceSearch method starts a reference search. The stage must be idle to
perform a reference search. GetState can be used to see if the reference was found.

See also

Method Stop, GetState, Property IsReferenced

Version info

 Software v3.5.0.0 or later

7.16.2.18 Stage::SetAxisZero

This method sets given axis coordinate to zero. There is no move, the internal
coordinate offset is changed.

Syntax

objStage.SetAxisZero()

376 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument

Parameter Type Description

nAxisId int32 Virtual axis identifier

Result

None

Remarks

The SetAxisZero method sets given axis coordinate to zero. There is no move, the
internal coordinate offset is changed.

See also

Method GetAxisValue, GetCurrentAxisZeroPosition, SetZero

Version info

 Software v3.8.7.0 or later

7.16.2.19 Stage::SetSpeedPercent

This method sets the global stage speed in percent.

Syntax

objStage.SetSpeedPercent(nSpeedPercent)

Argument

Parameter Type Description

nSpeedPer
cent

int32 New speed in percent from 1-100

Result

None

Remarks

The SetSpeedPercent method sets the new global stage speed in percent. This new
speed is first used in the next move transaction commit.

See also

377Object Reference

©2022 by Nanosurf, all rights reserved

Method GetSpeedPercent, CommitMoveTransaction

Version info

 Software v3.5.0.0 or later

7.16.2.20 Stage::SetTransactionDependentApproachMove

This method configures the move transaction to add a dependent approach axis move if
necessary.

Syntax

objStage.SetTransactionDependentApproachMove()

Argument

None

Result

None

Remarks

The SetTransactionDependentApproachMove method configure the move
transaction to add a dependent approach axis move if necessary. This move is
configured with the "DependentMoveFactor" attribute on the Approach node in the
stagex configuration.

See also

Method AppendToMoveTransaction, ClearMoveTransaction, CommitMoveTransaction

Version info

 Software v3.8.8.0 or later

7.16.2.21 Stage::SetTransactionNoOrthoCorrection

This method configures the move transaction to not apply orthogonal correction when.

Syntax

objStage.SetTransactionNoOrthoCorrection()

Argument

378 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

None

Result

None

Remarks

The SetTransactionNoOrthoCorrection method configure the move transaction to
not apply orthogonal correction when moving. This only applies if an orthogonal relation
is setup between two axes in the stagex configuration.

See also

Method AppendToMoveTransaction, ClearMoveTransaction, CommitMoveTransaction

Version info

 Software v3.8.5.6 or later

7.16.2.22 Stage::SetTransactionNoSecureMove

This method configures the move transaction to not apply orthogonal correction when.

Syntax

objStage.SetTransactionNoSecureMove()

Argument

None

Result

None

Remarks

The SetTransactionNoSecureMove method configure the move transaction to not
do secure moves configured in the stagex configuration.

See also

Method AppendToMoveTransaction, ClearMoveTransaction, CommitMoveTransaction

Version info

 Software v3.8.5.6 or later

379Object Reference

©2022 by Nanosurf, all rights reserved

7.16.2.23 Stage::SetupInstance

This method creates the stage sub system instance with a given configuration.

Syntax

objStage.SetupInstance(strFilename)

Argument

Paramete
r

Type Description

strFilenam
e

String Stage configuration filename to setup stage instance with

Result

None

Remarks

The SetupInstance method creates the stage sub system instance. If there is already
an instance, it will be closed before creating the new one. The given file name supplies
the configuration for the new instance.

See also

Method CloseInstance, Property HasInstance

Version info

 Software v3.5.0.0 or later

7.16.2.24 Stage::SetZero

This method sets every axis coordinate to zero. There is no move, the internal
coordinate offset is changed.

Syntax

objStage.SetZero()

Argument

None

Result

380 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

None

Remarks

The SetZero method sets every axis coordinate to zero. There is no move, the internal
coordinate offset is changed.

See also

Method GetAxisValue, GetCurrentAxisZeroPosition, SetAxisZero

Version info

 Software v3.8.2.0 or later

7.16.2.25 Stage::SpecialOperationAxis

This method performs a special operation on a stage axis.

Syntax

objStage.SpecialOperationAxis(nAxisId, nId, fValue, nValue, strValue)

Argument

Parameter Type Description

nAxisId int32 Virtual Axis id

nId int32 Special operation id

fValue double
[out]

Double value pointer

nValue int32
[out]

Integral value pointer

strValue String
[out]

String value pointer

Result

None

Remarks

The SpecialOperationAxis method performs a special operation on a stage axis.
Special operations are axis type dependent and are documented separately and
customer specific.

See also

381Object Reference

©2022 by Nanosurf, all rights reserved

Method SpecialOperationView, SpecialOperationController

Version info

 Software v3.5.0.0 or later

7.16.2.26 Stage::SpecialOperationController

This method performs a special operation on a stage controller.

Syntax

objStage.SpecialOperationController(nControllerId, nId, fValue, nValue, strValue)

Argument

Parameter Type Description

nControllerI
d

int32 Hardware Controller id

nId int32 Special operation id

fValue double
[out]

Double value pointer

nValue int32
[out]

Integral value pointer

strValue String
[out]

String value pointer

Result

None

Remarks

The SpecialOperationController method performs a special operation on a stage
controller. Special operations are controller type dependent and are documented
separately and customer specific.

See also

Method SpecialOperationView, SpecialOperationAxis

Version info

 Software v3.5.0.0 or later

382 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.16.2.27 Stage::SpecialOperationView

This method performs a special operation on the stage view.

Syntax

objStage.SpecialOperationView(nId, fValue, nValue, strValue)

Argument

Parameter Type Description

nId int32 Special operation id

fValue double
[out]

Double value pointer

nValue int32
[out]

Integral value pointer

strValue String
[out]

String value pointer

Result

None

Remarks

The SpecialOperationView method performs a special operation on the stage view.
Special operations are stage view type dependent and are documented separately and
customer specific.

See also

Method SpecialOperationController, SpecialOperationAxis

Version info

 Software v3.5.0.0 or later

7.16.2.28 Stage::Stop

This method stops all stage movement.

Syntax

objStage.Stop()

Argument

383Object Reference

©2022 by Nanosurf, all rights reserved

None

Result

None

Remarks

The Stop method stops all stage axis in their movement. This can be a reference
search, a manual move or a "move to" operation. If the stage is idle this is noop.

See also

Method EmergencyStop, CommitMoveTransaction

Version info

 Software v3.5.0.0 or later

7.16.2.29 Stage::Unlock

This method unlocks the stage when locked.

Syntax

objStage.Unlock()

Argument

None

Result

None

Remarks

The Unlock method unlocks the stage system when locked. No other action is
possible on the stage system while it is locked.

See also

Method Lock

Version info

 Software v3.8.8.3 or later

384 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.17 System

The System class is providing general online SPM specific properties and methods.

Table of properties of System class:

Property name Purpose

SystemState Defines the state the SPM Controller is in

SystemStateIdleZAxisMode Defines the mode for the Z-Axis in the Idle-State

SystemStateIdleXYAxisMode Defines the mode for the XY-Axis in the Idle-State

SystemStateIdleDAC1Mode Defines the mode for the DAC1 channel in the Idle-
State

SystemStateIdleZAxisValue Defines the position for the Z-Axis in the Idle-State

MeasurementEnvironment Defines the measurement environment the SPM is
working in

SystemHealthState Monitors the health state of the SPM software /
hardware system

Table of methods of System class:

Methode name Purpose

MotorMove Performs a motor move

MotorStep Performs a motor step

MotorStop Stops any motor movement

ForceMotorPosUpdate Requests an update of the motor positions

MotorSetPosZero Sets current position of given motor to 0.0

LevelScanhead Levels the scanhead

MotorReference Reference given motor

MotorReferenceAndMoveBack References given motor and goes back to the
previous position

IsMotorReferenced Checks whether motors are referenced

GetMotorPosition Returns position of given motor

385Object Reference

©2022 by Nanosurf, all rights reserved

7.17.1 Properties

7.17.1.1 System::MeasurementEnvironment

Returns or set the sensor measurement environment mode.

Syntax

system.MeasurementEnvironment [= mode]

Setting

Argument Type Description

mode long Defines the measurement environment mode of the sensor
system. See valid mode index in the table below.

Remarks

Table of measurement environment mode values and description:

State
No.

Name Description

0 MeasEnv_Air measure in air

1 MeasEnv_LIquid measure in liquid

Example

' measure in liquid

objSysteme.MeasurementEnvironement = 1

See also

Property Cantilever.

7.17.1.2 System::SystemHealthState

Monitors the health state of the SPM software / hardware system

Syntax

system.SystemHealthState

Result

386 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

The system health state is a value encoded with information about various system
states.
Those states are looked at in regard of healthiness. For instance, if the controller isn’t
reachable this is unhealthy.
The system health state is a summary of such states and checks and returnes its
status as a bit field of results.
A health state of 0 means everything should be ok.

Table of possible health flags:

Bit No. Name Description

0 HealthState_CtrlDoNotResponse The controller gives no answer to a
test communication package in a
timeframe of of 5sec.

1 SysState_CtrlInSimulationMode The controller is only simulated.
This could be by desire or because
it was not found during PC
software startup.

Remarks

See also

none

7.17.1.3 System::SystemState

Defines the state the SPM Controller is in

Syntax

system.SystemState

Result

The SPM Controller is always in a so called system state. The following SystemStates
are available:

Table of operating mode values and description:

State
No.

Name Description

387Object Reference

©2022 by Nanosurf, all rights reserved

0 SysState_Uncal State during startup or error

1 SysState_Idle State after startup and with no running activity

2 SysState_Approach State during approaching

3 SysState_Scan State during imagine

4 SysState_Spec State during spectroscopy

5 SysState_Litho State during lithography

6 SysState_MacroCmd State of macro command engine usage

Remarks

The SPM Controller automatically enters states if a activity is started by the user or
COM-API (e.g Start Imaging with "Start" button or calling the objScan.Start command).
After a activity is finished the SPM Controller enters the SysState_Idle.

See also

Properties SystStateIdleZMode, SystemStateIdleXYMode

7.17.1.4 System::SystemStateIdleZAxisMode

Defines the mode for the Z-Axis in the Idle-State

Syntax

system.SystemStateIdleZAxisMode

Result

If the SPM Controller is in the SysState_Idle this property defines the mode the Z-Axis
of the scan head is in.

The following ZIdleModes are available:

State
No.

Name Description

0 SysStateIdleZ_ZControllerActive Allows the z feedback controller work on
this axis

1 SysStateIdleZ_RetractTip Retract the z-Axis to minimal position

2 SysStateIdleZ_KeepLastPos Keep the z-Axis value

3 SysStateIdleZ_AbsolutPos Set the Z-Axis to the defined absolute

388 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

position

Remarks

None.

See also

Properties SystStateIdleZAxisValue

7.17.1.5 System::SystemStateIdleZAxisValue

Defines the position for the Z-Axis in the Idle-State

Syntax

system.SystemStateIdleZAxisValue

Result

If the SPM Controller is in the SysState_Idle and the ZIdleMode is set to
SysStateIdleZ_AbsolutPos this property defines the absolute position the z-axis is set
to.

Remarks

None.

See also

Properties System.SystemStateIdleZAxisMode

7.17.1.6 System::SystemStateIdleDAC1Mode

Defines the mode for the DAC1 signal channel in the Idle-State

Syntax

system.SystemStateIdleDAC1Mode

Result

389Object Reference

©2022 by Nanosurf, all rights reserved

If the SPM Controller is in the SysState_Idle this property defines the mode the DAc1
signal channel is in.

The following ZIdleModes are available:

State
No.

Name Description

0 SysStateIdleZ_ZControllerActive Allows the z feedback controller work on
this axis

1 SysStateIdleZ_RetractTip Sets the DAC1 output to minimal value

2 SysStateIdleZ_KeepLastPos Keep the DAC1 value

3 SysStateIdleZ_AbsolutPos Set the DAC1 to a defined absolute
position

Remarks

The DAC1 is mapped by the C3000 controller to the "User Output C" output channel.
The User Output C is some times used for controlling a external long range z-actuator.

The Absolute position value of this channel is defined by the objSignalIO.UserDAC1
value.

See also

Properties objSignalIO.UserDAC1

7.17.1.7 System::SystemStateIdleXYAxisMode

Defines the mode for the XY-Axis in the Idle-State

Syntax

system.SystemStateIdleXYAxisMode

Result

If the SPM Controller is in the SysState_Idle this property defines the mode the Z-Axis
of the scan head is in.

The following XYIdleModes are available:

390 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

State
No.

Name Description

0 SysStateIdleXY_ImageCenter Go to the center position defined by the
XYOffset of the scan image

1 SysStateIdleXY_KeepLastPositio
n

Keep the XY-Axis value

Remarks

The XYOffset is defined by Scan.CenterPosX/Y properties. If the
SysStateIdleXY_ImageCenter mode is active any change of the CenterPosition moves
the tip also during SysState_Idle.

See also

Properties Scan.CenterPosX, Scan.CenterPosY

7.17.2 Methods

7.17.2.1 System::MotorMove

Performs a motor move

Syntax

system.MotorMove(nMotor, direction, speed)

Argument

Parameter Type Description

nMotor long Motor ID

nDirection long Direction

nSpeed long Level

Remarks

This function requires corresponding motorization to work correctly.

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,
 MotorFocus = 4,

391Object Reference

©2022 by Nanosurf, all rights reserved

 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

 Available nDirections are:

 Positive = 0,
 Negative = 1

 Available nSpeed levels are:

 VerySlow = 0,
 Slow = 1,
 Normal = 2,
 Fast = 3,
 VeryFast = 4

See also

Method MotorStop

7.17.2.2 System::MotorStep

Performs a motor step

Syntax

system.MotorStep(nMotor, stepSize)

Argument

Parameter Type Description

nMotor long Motor ID

stepSize double Step size for motor to perform

Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,

392 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

 MotorFocus = 4,
 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

See also

Method MotorStop

7.17.2.3 System::MotorStop

Stops motors movement

Syntax

system.MotorStop()

Remarks

This function requires corresponding motorization to work correctly.

See also

Method MotorStep, MotorMove

7.17.2.4 System::ForceMotorPosUpdate

Requests an update of the motor positions

Syntax

system.ForceMotorPosUpdate()

Remarks

This function requires corresponding motorization to work correctly.

See also

Method GetMotorPosition

393Object Reference

©2022 by Nanosurf, all rights reserved

7.17.2.5 System::MotorSetPosZero

Sets current position of given motor to 0.0

Syntax

system.MotorSetPosZero(nMotor)

Argument

Parameter Type Description

nMotor long Motor ID

Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,
 MotorFocus = 4,
 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

See also

Method GetMotorPosition

7.17.2.6 System::LevelScanhead

Levels the scanhead

Syntax

system.LevelScanhead()

Remarks

This function requires corresponding motorization to work correctly.

394 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.17.2.7 System::MotorReference

References motors

Syntax

system.MotorReference()

Argument

Parameter Type Description

nMotor long Motor ID

Remarks

This function requires corresponding motorization to work correctly.

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,
 MotorFocus = 4,
 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

See also

Method MotorReferenceAndMoveBack, IsMotorReferenced

7.17.2.8 Systen::MotorReferenceAndMoveBack

References motors and goes back to the previous position

Syntax

system.MotorReferenceAndMoveBack()

Argument

Parameter Type Description

395Object Reference

©2022 by Nanosurf, all rights reserved

nMotor long Motor ID

Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,
 MotorFocus = 4,
 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

See also

Method MotorReference, IsMotorReferenced

7.17.2.9 System::IsMotorReferenced

Checks whether motor is referenced

Syntax

flag = system.IsMotorReferenced(nMotor)

Argument

Parameter Type Description

nMotor long Motor ID

Result

Result Type Description

flag Boolean Returns True if motors are referenced

Remarks

This function requires corresponding motorization to work correctly.

396 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,
 MotorFocus = 4,
 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

See also

Method MotorReference, MotorReferenceAndMoveBack

7.17.2.10 System::GetMotorPosition

Returns position of given motor

Syntax

position = system.GetMotorPosition(nMotor)

Argument

Parameter Type Description

nMotor long Motor ID

Result

Result Type Description

position double Position of a given motor

Remarks

This function requires corresponding approach motorization to work correctly.

Available nMotor ID's are:

 MotorApproach = 0,
 MotorA = 1,
 MotorB = 2,
 MotorC = 3,
 MotorFocus = 4,

397Object Reference

©2022 by Nanosurf, all rights reserved

 MotorPTEX = 5,
 MotorPTEY = 6,
 MotorBeamDeflectionX = 7,
 MotorBeamDeflectionY = 8,
 MotorPhotodiodeLateral = 9,
 MotorPhotodiodeNormal = 10,
 MotorLensGimbal = 11

See also

Method ForceMotorPosUpdate

7.18 Video

The Video class handles the microscope's video camera.

The Video Cameras in the scan head can be controlled by this class. Two cameras are
available. A TopView camera to look vertical to the sample and the cantilever and a
SideView camera to look about horizontal to the cantilever. VideoSource select one of
them to be displayed in the "Position Window". For each camera the Illumination, the
Brightness and the Contrast of the video display can be adjusted.

A snap shot of the current video image if a compact video camera device is used creates
SaveFrame. If a flex or a highres video camera device is used use SaveFrameMPX1
(side view) or SaveFrameMPX2 (top view).

A object pointer to this class is provided by the Application.Video object property.

Table of properties for Video class:

Property name Purpose

VideoSource Select either TopView or SideView camera

Illumination Set the power of sample illumination

Brightness Set the brightness of video image

Contrast Set the contrast of video image

Table of methods for Video class:

Method name Purpose

CopyFrame Copy the video frame to the clipboard

CopyFrameMPX1 Copy the video frame (side view) to the clipboard

CopyFrameMPX2 Copy the video frame (top view) to the clipboard

SaveFrame Save the video frame as JPEG Image file

398 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

SaveFrameMPX1 Save the video frame (side view) as PNG, JPG, BMP image file.

SaveFrameMPX2 Save the video frame (top view) as PNG, JPG, BMP image file.

Start Start video system, hardware detection, open video panel

Shutdown Stop video system, release hardware, closes video panel

IsStarted Check if video system is running

7.18.1 Properties

7.18.1.1 Video::Brightness

Returns or set the video image brightness.

Syntax

video.Brightness [= value]

Setting

Argument Type Description

value double Defines the video image brightness [%]. Values of 0 to 100% are
valid.

Remarks

This property defines the brightness of the video image.

Attention: For each video camera the properties Illumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Example

' show side view camera

objOpMode.VideoSource = 0

objOpMode.Brightness = 100 '%

See also

Property VideoSource, Illumination, Contrast.

399Object Reference

©2022 by Nanosurf, all rights reserved

7.18.1.2 Video::Contrast

Returns or set the video image contrast.

Syntax

video.Contrast [= value]

Setting

Argument Type Description

value double Defines the video image contrast [%]. Values of 0 to 100% are
valid.

Remarks

This property defines the contrast of the video image.

Attention: For each video camera the properties Illumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Example

' show top view camera

objOpMode.VideoSource = 1

objOpMode.Contrast = 80 '%

See also

Property VideoSource, Illumination, Brightness.

7.18.1.3 Video::Illumination

Returns or set the sample illumination.

Syntax

video.Illumination [= value]

Setting

Argument Type Description

value double Defines the illumination of the sample in [%]. Values of 0 to 100%
are valid.

400 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Remarks

This property defines the sample illumination with the build in light sources of the AFM
scan head.

Attention: For each video camera the properties Illumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Example

' show side view camera

objOpMode.VideoSource = 0

objOpMode.Illumination = 60 '%

See also

Property VideoSource, Brightness, Contrast.

7.18.1.4 Video::VideoSource

Returns or set the active video camera.

Syntax

video.VideoSource [= camera]

Setting

Argument Type Description

camera long Selects the active video camera. See valid camera index in the
table below.

Remarks

The AFM scan head is equipped with two video cameras. This property activates one
of them and display its video in the "Position Window".

Attention: For each video camera the properties Illumination, Brightness and Contrast
saves their independent values. Therefore select first the right video source and then
set one of the properties.

Table of operating mode values and description:

State
No.

Name Description

401Object Reference

©2022 by Nanosurf, all rights reserved

0 Video_SideView Activates the horizontal video camera

1 Video_TopView Activates the vertical video camera

Example

' show side view camera

objOpMode.VideoSource = 0

See also

Property Illumination, Brightness, Contrast.

7.18.2 Methods

7.18.2.1 Video::Start

Start the video system.
This method starts the hardware detection. opens the VideoPanels (if a camera is
connected).

Syntax

video.Start

Arguments

none

Result

none

Remarks

If the video system is already started, this has no impact.

Example

' start the video system

objVideo.Start()

Version info

 Software v3.8.2.0 or later

402 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

Methode Video::Shutdown
Methode Video::IsStarted

7.18.2.2 Video::Shutdown

Shutdown the video system.
This method shuts down the video hardware detection, releases all hardware resources
and closes the VideoPanel;

Syntax

video.Shutdown

Arguments

none

Result

none

Remarks

If the video system is already shut off, this method has no impact.

Example

' shutdown the video system

objVideo.Shutdown()

Version info

 Software v3.8.2.0 or later

See also

Methode Video::Start
Methode Video::IsStarted

403Object Reference

©2022 by Nanosurf, all rights reserved

7.18.2.3 Video::IsStarted

Test if the video system is started

Syntax

video.IsStarted

Arguments

none

Result

Result Type Description

ok Boolean Returns True if the video system is started. Returns False if it is shut
down.

Remarks

none

Example

' Test if the video system is started

If objVideo.IsStarted() == False Then

 MsgBox "Video system offline!"

End If

Version info

 Software v3.8.2.0 or later

See also

Methode Video::Shutdown
Methode Video::IsStarted

7.18.2.4 Video::CopyFrame

Copy the video frame to the clipboard.

Syntax

ok = video.CopyFrame

404 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Arguments

none

Result

Result Type Description

ok Boolean Returns True if the frame could be copied otherwise False.

Remarks

none

Example

' save snap shot of top view camera

objVideo.VideoSource = 1

If objVideo.CopyFrame == False Then

 MsgBox "Could not copy video frame!"

End If

See also

Property VideoSource

7.18.2.5 Video::CopyFrameMPX1

Copy the video frame to the clipboard.

Syntax

ok = video.CopyFrameMPX1

Arguments

none

Result

Result Type Description

ok Boolean Returns True if the image could be copied otherwise False.

Remarks

none

405Object Reference

©2022 by Nanosurf, all rights reserved

Example

' save snap shot of top view camera

If objVideo.CopyFrameMPX1() == False Then

 MsgBox "Could not save video image!"

End If

See also

7.18.2.6 Video::CopyFrameMPX2

Copy the video frame to the clipboard.

Syntax

ok = video.CopyFrameMPX2

Arguments

none

Result

Result Type Description

ok Boolean Returns True if the image could be copied otherwise False.

Remarks

none

Example

' save snap shot of top view camera

If objVideo.CopyFrameMPX2() == False Then

 MsgBox "Could not save video image!"

End If

See also

7.18.2.7 Video::SaveFrame

Save the video frame into a file.

Syntax

406 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

ok = video.SaveFrame(filename)

Arguments

Argument Type Description

filename String Path and filename of the video frame. File extension should be
.JPG

Result

Result Type Description

ok Boolean Returns True if the frame could be saved otherwise False.

Remarks

This method saves a snap shot of the current video display to a file. The file is a JPEG
compressed video frame.

Example

' save snap shot of top view camera

objVideo.VideoSource = 1

If objVideo.SaveFrame("topimage.jpg") == False Then

 MsgBox "Could not save video image!"

End If

See also

Property VideoSource

7.18.2.8 Video::SaveFrameMPX1

Save the video image into a file.

Syntax

ok = video.SaveFrameMPX1(filename)

Arguments

Argument Type Description

filename String Path and filename of the video image. File extension should be
.JPG

Result

407Object Reference

©2022 by Nanosurf, all rights reserved

Result Type Description

ok Boolean Returns True if the image could be saved otherwise False.

Remarks

This method saves a snap shot of th current video display to a file. The file is a JPEG
compressed video image.

Example

' save snap shot of side view camera

If objVideo.SaveFrameMPX1("sideimage.jpg") == False Then

 MsgBox "Could not save video image!"

End If

See also

7.18.2.9 Video::SaveFrameMPX2

Save the video image into a file.

Syntax

ok = video.SaveFrameMPX2(filename)

Arguments

Argument Type Description

filename String Path and filename of the video image. File extension should be
.JPG

Result

Result Type Description

ok Boolean Returns True if the image could be saved otherwise False.

Remarks

This method saves a snap shot of th current video display to a file. The file is a JPEG
compressed video image.

Example

' save snap shot of top view camera

408 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

If objVideo.SaveFrameMPX2("topimage.jpg") == False Then

 MsgBox "Could not save video image!"

End If

See also

7.19 Thermal Tune

The Thermal Tune class handles the microscope thermal tune procedure.

A object pointer to this class is provided by the Scanhead.ThermalTuning object property.

Table of properties for Thermal Tune class:

Property name Purpose

FreqBandUpperBound Get or set upper bound of frequency band to be analyzed [Hz]

FreqResolution Get or set frequency resolution of FFT [Hz]

BlockCount Get or set how many blocks are sampled (0 = continuous)

AverageType Get or set the averaging function to use

CantileverTemperature Get or set temperature around cantilever

FreqLowerBound Get or set frequency lower bound (used for fitting)

FreqUpperBound Get or set frequency upper bound (used for fitting)

Table of methods for Thermal Tune class:

Method name Purpose

Start Start Thermal Tune data capture and calculation procedure

Stop Stop Thermal Tune data capture and calculation procedure

AutoSetupFrequencies Calculates suitable lower and upper bound values for the
peak search algorithm based on cantilever characteristics

GetCurrentBlockCount Returns current block count of data acquisition

GetFrequencyList Returns a list of frequencies taking frequency band and
resolution into account

GetBlock Returns a vector of captured data

GetCurrentAverage Returns a buffer with the average of all measured blocks

NsfCustomFit Fits a curve to match pwrSpectrum based on Nanosurf's

409Object Reference

©2022 by Nanosurf, all rights reserved

own method

NsfCustomFitOnCurrentAverageAndBoun
ds

Fits a curve to match the current average spectrum and
bounds based on Nanosurf's own method

NsfCustomFitOnCurrentAverage Fits a curve to match the current average spectrum based
on Nanosurf's own method

NsfCustomFitCurve Calculates y-values for a list of x-values based on
Nanosurf's own curve fit algorithm

SimpleHarmonicOscFit Fits a curve to match pwrSpectrum based on simple
harmonic oscillator method

SimpleHarmonicOscFitOnCurrentAverag
eAndBounds

Fits a curve to match the current average spectrum and
bounds based on simple harmonic oscillator method

SimpleHarmonicOscFitOnCurrentAverag
e

Fits a curve to match the current average spectrum based
on simple harmonic oscillator method

SimpleHarmonicOscFitCurve Calculates y-values for a list of x-values based on simple
harmonic oscillator method

CalculateSpringConstant_Sader Calculates the spring constant from the current noise
measurement average with the Sader methode

CalculateSpringConstant_Equipartition Calculates the spring constant from the current noise
measurement average with the equipartition method

7.19.1 Properties

7.19.1.1 ThermalTuning::FreqBandUpperBound

Get or set upper bound of frequency band to be analyzed in Hz.

Syntax

ThermalTuning.FreqBandUpperBound [= value]

Setting

Argument Type Description

value double Upper bound taken into account for FFT

Remarks

None

Example

See Scanhead.ThermalTuning

410 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

None

7.19.1.2 ThermalTuning::FreqResolution

Get or set frequency resolution of FFT in Hz.

Syntax

ThermalTuning.FreqResolution [= value]

Setting

Argument Type Description

value double Requested frequency resolution of FFT

Remarks

None

Example

See Scanhead.ThermalTuning

See also

None

7.19.1.3 ThermalTuning::BlockCount

Get or set how many blocks are sampled (0 = continuous).

Syntax

ThermalTuning.BlockCount [= value]

Setting

Argument Type Description

value long Defines how many blocks are sampled (0 = continuous)

Remarks

411Object Reference

©2022 by Nanosurf, all rights reserved

None

Example

See Scanhead.ThermalTuning

See also

None

7.19.1.4 ThermalTuning::AverageType

Get or set how many blocks are sampled (0 = continuous).

Syntax

ThermalTuning.AverageType [= value]

Setting

Argument Type Description

value long Defines the averaging function to use

Remarks

Value Name Description

0 ExponentialDecay Exponential decay averaging

1 ProportionalWeight Arithmetic mean calculation

Example

See Scanhead.ThermalTuning

See also

None

7.19.1.5 ThermalTuning::CantileverTemperature

Get or set temperature of cantilever environment.

412 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Syntax

ThermalTuning.CantileverTemperature [= value]

Setting

Argument Type Description

value double Environment temperature in degree Celsius

Remarks

None

Example

See Scanhead.ThermalTuning

See also

None

7.19.1.6 ThermalTuning::FreqLowerBound

Get or set frequency lower bound (used for fitting)

Syntax

ThermalTuning.FreqLowerBound [= value]

Setting

Argument Type Description

value double Frequency lower bound used for fitting

Remarks

None

Example

See Scanhead.ThermalTuning

See also

None

413Object Reference

©2022 by Nanosurf, all rights reserved

7.19.1.7 ThermalTuning::FreqUpperBound

Get or set frequency upper bound (used for fitting)

Syntax

ThermalTuning.FreqUpperBound [= value]

Setting

Argument Type Description

value double Frequency upper bound used for fitting

Remarks

None

Example

See Scanhead.ThermalTuning

See also

None

7.19.2 Methods

7.19.2.1 ThermalTuning::Start

Starts continuous data capture of thermal tune data.

Syntax

ThermalTuning.Start

Remarks

Thermal refers to the thermally activated spontaneous motion of the cantilever
that can be seen in such measurements, tune refers to the procedure of determining the
resonance characteristics of the cantilever from this data.

Example

' create objects

Dim objApp : Set objApp = SPM.Application

Dim objScanhead : Set objScanhead = objApp.Scanhead

Dim objThermalTune : Set objThermalTune = objScanhead.ThermalTuning

' prepare

objThermalTune.FreqBandUpperBound 188000

dim currentAverage

414 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

' start scan

objThermalTune.Start

' do something

' finish immediately

objThermalTune.Stop

See also

Method ThermalTuning.Stop

7.19.2.2 ThermalTuning::Stop

Stop continuous data capture of thermal tune data.

Syntax

ThermalTuning.Stop

Remarks

Thermal refers to the thermally activated spontaneous motion of the cantilever
that can be seen in such measurements, tune refers to the procedure of determining

the
resonance characteristics of the cantilever from this data.

Example

' prepare

objThermalTune.FreqBandUpperBound 188000

dim currentAverage

' start scan

objThermalTune.Start

' get data

currentAverage = objThermalTune.GetCurrentAverage()

' do something

' finish immediately

objThermalTune.Stop

See also

Method ThermalTuning.Start

7.19.2.3 ThermalTuning::AutoSetupFrequencies

Automatically calculates suitable lower and upper bound values for the peak search
algorithm.
Based on a margin of the resonance frequency supplied by the manufacturer and
registered in the cantilever list.

415Object Reference

©2022 by Nanosurf, all rights reserved

Syntax

ThermalTuning.AutoSetupFrequencies(bOnlyCalculateIfBadValues)

Argument

Parameter Type Description

bOnlyCalculateIfBadV
alues

bool only if the current resonance frequency is out of the
lower/upper bound the calculation should be run

Remarks

None

Example

See Scanhead.ThermalTuning

See also

Properties ThermalTuning.FreqBandUpperBound

7.19.2.4 ThermalTuning::GetCurrentBlockCount

Returns the current block count.

Syntax

value = objThermalTune.GetCurrentBlockCount()

Result

Result Type Description

value long Current index of block

Remarks

None

Example

See Scanhead.ThermalTuning

See also

Property ThermalTuning.BlockCount

416 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method ThermalTuning.GetBlock

7.19.2.5 ThermalTuning::GetFrequencyList

Returns a buffer with the frequencies associated with the FFT bins

Syntax

value = objThermalTune.GetFrequencyList(bool)

Argument

Parameter Type Description

bOnlyCalculateIfBad
Values

bool Calculate frequency list in place instead of returning
internal list which may not have been calculated yet
(is calculated when sampling is started).

Result

Result Type Description

variant_array double Buffer with frequencies

Remarks

None

Example

See Scanhead.ThermalTuning

See also

None

7.19.2.6 ThermalTuning::GetBlock

Returns a buffer with the frequencies associated with the FFT bins

Syntax

value = objThermalTune.GetFrequencyList(bool)

Argument

417Object Reference

©2022 by Nanosurf, all rights reserved

Parameter Type Description

bOnlyCalculateIfBad
Values

bool Calculate frequency list in place instead of returning
internal list which may not have been calculated yet
(is calculated when sampling is started).

Result

Result Type Description

variant_array double Buffer with frequencies

Remarks

None

Example

See Scanhead.ThermalTuning

See also

None

7.19.2.7 ThermalTuning::GetCurrentAverage

Returns a buffer with the average of all measured blocks.

Syntax

value = objThermalTune.GetCurrentAverage()

Result

Result Type Description

variant_array double Current average over all measured blocks

Remarks

None

Example

See Scanhead.ThermalTuning

418 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See also

None

7.19.2.8 ThermalTuning::NsfCustomFit

Fits a curve to the power spectral density based on Nanosurf's own method.

Syntax

value = objThermalTune.NsfCustomFit(frequencyList, pwrSpectrum, nLowerBound,
nUpperBound)

Argument

Parameter Type Description

frequencyList Variant Frequency list for the FFT power spectrum to be
fitted [Hz]

pwrSpectrum Variant Power spectrum values (shall be same size as
frequencyList)

nLowerBound double Lower bound of frequeny range to be used to find the
resonance peak [Hz]

nUpperBound double Upper bound of frequeny range to be used to find the
resonance peak [Hz]

Result

Result Type Description

variant_array Variant Set of curve fitting parameters (compatible with custom fit
function)

 enum NSFFitParams
 {
 NSF_Damping = 0,
 NSF_Sigma = 1,
 NSF_ResFreq = 2,
 NSF_QualityFactor = 3,
 NSF_ResPkAmplitudeAboveNoise = 4,
 NSF_NumOfParams = 5
 };

Remarks

419Object Reference

©2022 by Nanosurf, all rights reserved

None

Example

See Scanhead.ThermalTuning

See also
Method ThermalTuning.NSFCustomFitOnCurrentAverageAndBounds
Method ThermalTuning.NSFCustomFitOnCurrentAverage

7.19.2.9 ThermalTuning::NsfCustomFitOnCurrentAverageAndBounds

Fits a curve to the power spectral density based on Nanosurf's own method.

Syntax

value = objThermalTune.NsfCustomFitOnCurrentAverageAndBounds()

Argument

Parameter Type Description

nLowerBound double Lower bound of frequeny range to be used to find the
resonance peak [Hz]

nUpperBound double Upper bound of frequeny range to be used to find the
resonance peak [Hz]

Result

Result Type Description

variant_array Variant Set of curve fitting parameters (compatible with custom fit
function)

 enum NSFFitParams
 {
 NSF_Damping = 0,
 NSF_Sigma = 1,
 NSF_ResFreq = 2,
 NSF_QualityFactor = 3,
 NSF_ResPkAmplitudeAboveNoise = 4,
 NSF_NumOfParams = 5
 };

Remarks

None

420 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Example

See Scanhead.ThermalTuning

See also
Method ThermalTuning.NSFCustomFitOnCurrentAverage
Method ThermalTuning.NSFCustomFit

7.19.2.10 ThermalTuning:NsfCustomFitOnCurrentAverage

Fits a curve to the power spectral density based on Nanosurf's own method.

Syntax

value = objThermalTune.NsfCustomFitOnCurrentAverage(nLowerBound,
nUpperBound)

Argument

Parameter Type Description

nLowerBound double Lower bound of frequeny range to be used to find the
resonance peak [Hz]

nUpperBound double Upper bound of frequeny range to be used to find the
resonance peak [Hz]

Result

Result Type Description

variant_array Variant Set of curve fitting parameters (compatible with custom fit
function)

 enum NSFFitParams
 {
 NSF_Damping = 0,
 NSF_Sigma = 1,
 NSF_ResFreq = 2,
 NSF_QualityFactor = 3,
 NSF_ResPkAmplitudeAboveNoise = 4,
 NSF_NumOfParams = 5
 };

Remarks

None

421Object Reference

©2022 by Nanosurf, all rights reserved

Example

See Scanhead.ThermalTuning

See also

Method ThermalTuning.NSFCustomFitOnCurrentAverageAndBounds
Method ThermalTuning.NSFCustomFit

7.19.2.11 ThermalTuning:NsfCustomFitCurve

 Calculates y-values for a list of x-values based on Nanosurf's own curve fit algorithm.

Syntax

value = objThermalTune.NsfCustomFitCurve(frequencyList, fitParams)

Argument

Parameter Type Description

frequencyList Variant List of frequencies (X-axis positions) where Y-axis
values shall be computed]

fitParams Variant fitParams Set of curve fitting parameters (compatible
with custom fit function)

 enum NSFFitParams
 {
 NSF_Damping = 0,
 NSF_Sigma = 1,
 NSF_ResFreq = 2,
 NSF_QualityFactor = 3,
 NSF_ResPkAmplitudeAboveNoise = 4,
 NSF_NumOfParams = 5
 };

Result

Result Type Description

variant_array Variant Y-axis values on fitted curve corresponding to positions on X-
axis

Remarks

None

Example

422 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

See Scanhead.ThermalTuning

See also

Method ThermalTuning.NSFCustomFitOnCurrentAverageAndBounds
Method ThermalTuning.NSFCustomFitOnCurrentAverage

7.19.2.12 ThermalTuning:SimpleHarmonicOscFit

Fits a curve to the power spectral density based on simple harmonic oscillator model.

Syntax

value = objThermalTune.SimpleHarmonicOscFit(frequencyList, pwrSpectrum,
nLowerBound, nUpperBound)

Argument

Parameter Type Description

frequencyList Variant Frequency list for the FFT power spectrum to be
fitted [Hz]

pwrSpectrum Variant Power spectrum values (shall be same size as
frequencyList)

nLowerBound double Lower bound of frequeny range to be used to find the
resonance peak [Hz]

nUpperBound double Upper bound of frequeny range to be used to find the
resonance peak [Hz]

Result

Result Type Description

variant_array Variant Set of curve fitting parameters (compatible with simple
harmonic fit function)

enum SHOFitParams
 {
 SHO_WhiteNoise = 0,
 SHO_PinkNoise = 1,
 SHO_ResFreq = 2,
 SHO_QualityFactor = 3,
 SHO_ResPkAmplitudeAboveNoise = 4,
 SHO_NumOfParams = 5
 };

423Object Reference

©2022 by Nanosurf, all rights reserved

Remarks

None

Example

See Scanhead.ThermalTuning

See also

Method ThermalTuning.SimpleHarmonicOscFitOnCurrentAverageAndBounds
Method ThermalTuning.SimpleHarmonicOscFitOnCurrentAverage

7.19.2.13 ThermalTuning:SimpleHarmonicOscFitOnCurrentAverageAndBounds

Fits a curve to the power spectral density based on simple harmonic oscillator model.

Syntax

value = objThermalTune.SimpleHarmonicOscFitOnCurrentAverageAndBounds()

Result

Result Type Description

variant_array Variant Set of curve fitting parameters (compatible with simple
harmonic fit function)

enum SHOFitParams
 {
 SHO_WhiteNoise = 0,
 SHO_PinkNoise = 1,
 SHO_ResFreq = 2,
 SHO_QualityFactor = 3,
 SHO_ResPkAmplitudeAboveNoise = 4,
 SHO_NumOfParams = 5
 };

Remarks

None

Example

See Scanhead.ThermalTuning

See also

424 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method ThermalTuning.SimpleHarmonicOscFit
Method ThermalTuning.SimpleHarmonicOscFitOnCurrentAverage

7.19.2.14 ThermalTuning:SimpleHarmonicOscFitOnCurrentAverage

Fits a curve to the power spectral density based on simple harmonic oscillator model.

Syntax

value = objThermalTune.SimpleHarmonicOscFitOnCurrentAverage(nLowerBound,
nUpperBound)

Argument

Parameter Type Description

nLowerBound double Lower bound of frequeny range to be used to find the
resonance peak [Hz]

nUpperBound double Upper bound of frequeny range to be used to find the
resonance peak [Hz]

Result

Result Type Description

variant_array Variant Set of curve fitting parameters (compatible with simple
harmonic fit function)

enum SHOFitParams
 {
 SHO_WhiteNoise = 0,
 SHO_PinkNoise = 1,
 SHO_ResFreq = 2,
 SHO_QualityFactor = 3,
 SHO_ResPkAmplitudeAboveNoise = 4,
 SHO_NumOfParams = 5
 };

Remarks

None

Example

See Scanhead.ThermalTuning

See also

425Object Reference

©2022 by Nanosurf, all rights reserved

Method ThermalTuning.SimpleHarmonicOscFit
Method ThermalTuning.SimpleHarmonicOscFitOnCurrentAverageAndBounds

7.19.2.15 ThermalTuning:SimpleHarmonicOscFitCurve

 Calculates y-values for a list of x-values based on simple harmonic oscillator curve fit
algorithm.

Syntax

value = objThermalTune.SimpleHarmonicOscFitCurve(frequencyList, fitParams)

Argument

Parameter Type Description

frequencyList Variant List of frequencies (X-axis positions) where Y-axis
values shall be computed]

fitParams Variant fitParams Set of curve fitting parameters (compatible
with custom fit function)

 enum SHOFitParams
 {
 SHO_WhiteNoise = 0,
 SHO_PinkNoise = 1,
 SHO_ResFreq = 2,
 SHO_QualityFactor = 3,
 SHO_ResPkAmplitudeAboveNoise = 4,
 SHO_NumOfParams = 5
 };

Result

Result Type Description

variant_array Variant Y-axis values on fitted curve corresponding to positions on X-
axis

Remarks

None

Example

See Scanhead.ThermalTuning

See also

426 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Method ThermalTuning.SimpleHarmonicOscFitOnCurrentAverage
Method ThermalTuning.SimpleHarmonicOscFitOnCurrentAverageAndBounds

7.19.2.16 ThermalTuning:CalculateSpringConstant_Sader

Calculates the spring constant with the Sader method.

Syntax

value = objThermalTune.CalculateSpringConstant_Sader(nCantileverLength,
nCantileverWidth, nResFreq, nQualityFactor, nViscosity, nDensity)

Argument

Parameter Type Description

nCantileverLength double Cantilever length [m]

nCantileverWidth double Cantilever width [m]

nResFreq double Cantilever resonance frequency [Hz]

nQualityFactor double Cantilever resonance peak quality factor

nViscosity double Viscosity of environment [kg/m/s]

nDensity double Densitiy of envivornment [kg/m3]

Result

Result Type Description

value double Spring constant in N/m

Remarks

None

Example

See Scanhead.ThermalTuning

See also

Method ThermalTuning.CalculateSpringConstant_Equipartition

427Object Reference

©2022 by Nanosurf, all rights reserved

7.19.2.17 ThermalTuning:CalculateSpringConstant_Equipartition

Calculates the spring constant with the equipartition theorem method.

Syntax

value = objThermalTune.CalculateSpringConstant_Equipartition(nAbsTempKelvin,
nTipHeight, nCantileverLength, nCantileverAngle, nA, nResFreq, nQualityFactor)

Argument

Parameter Type Description

nAbsTempKelvin double Absolute temperature [Kelvin]

nTipHeight double Tip height [m]

nCantileverLength double Cantilever length [m]

nCantileverAngle double Cantilever angle [rad]

nA double Amplitude of resonance peak [m/sqrt(Hz)]

nResFreq double Cantilever resonance frequency [Hz]

nQualityFactor double Cantilever resonance peak quality factor

Result

Result Type Description

value double Spring constant in N/m

Remarks

None

Example

See Scanhead.ThermalTuning

See also

Method ThermalTuning.CalculateSpringConstant_Sader

428 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.20 ZController

The ZController class handles the microscope's Z feedback loop controller properties.

The Z-Controller is controlling the z-axis of the scan head and track the surface by
keeping the tip sample distance constant. This is done by sensing a input signal and
compare it to the value in SetPoint. Deviations of the input signal to this set point value is
resulting in a z motion. The translation of the error to the z-motion is adjusted by different
controller gains. The PGain, the IGain and the DGain. Also different controller algorithm
can be chosen to adapt the controller best to the sample by Algorithm. The signal used
as the input signal to the feedback controller is defined by the selected operating mode of
the sensor. Refer to class OperatingMode.

A tip voltage can be applied to the tip to improve the sensors signal by TipVoltage.

A object pointer to this class is provided by the Application.ZController object property.

Table of properties of ZController class:

Property name Purpose

SetPoint Define the reference value for the input signal

PGain Proportional amplification of input error

IGain Amplification of the sum of the input error

DGain Amplification of the change of the input error

LoopMode operating mode of the z controller feedback loop

ErrorInputGain Amplification of the error signal prior the ADC

Algorithm Defines the algorithm used in the z feedback controller

TipVoltage Defines the voltage applied to the sensors tip

SetPointForceUnitMode Defines the unit of the Setpoint for static force operating
modes

OutputSel Defines the output channel of the z-feedback controller

PGain2 IGain2 DGain2 Defines the PID Gains used for the secondary feedback output

Table of methods of class ZController:

Method name Purpose

Retract Retract the tip.

IsRetracting Returns f the retracting process is active

GetInputValue Returns the current feedback input value

GetOutputValue Returns the current feedback output value

429Object Reference

©2022 by Nanosurf, all rights reserved

7.20.1 Properties

7.20.1.1 ZController::Algorithm

Returns or set used z-feedback loop algorithm.

Syntax

zctrl.Algorithm [= algo]

Setting

Argument Type Description

algo long Defines the z-feedback loop algorithm. See available modes in the
table below.

Remarks

Not available with C3000!

For the z-feedback control loop various algorithm can be used. This property selects
one.

The algorithm is defining on how the z-feedback is reacting on a input signal error.
Different algorithm can be selected to change the behaviour and can adapted to
different surfaces properties.

Table of algorithm values and description:

State
No.

Name Description

0 CtrlAlgo_StandardPID Classic PID-Controller

1 CtrlAlgo_PIAndFilter PI-Controller with moving averaging filter for input signals

See also

None

7.20.1.2 ZController::DGain

Returns or set the differential gain of the z-feedback controller.

Syntax

zctrl.DGain [= gain]

Setting

430 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Argument Type Description

gain double Defines the amplification of the change speed of the difference
between input signal and set point value. Valid values are 0 ..
32767. For C3000 controller [0 ... 2 2̂4]

Remarks

The D-Gain is defining the amplification of difference between the last and the current
difference between input signal and the set point value. Differential gain has to use very
carefully. A higher amplification generates a faster response but a gain value too high
can lead to oscillation of the z feedback loop and the D-Gain amplifies noise from the
input signal too.

A value of zero switch of the differential gain completely.

Example

objZCtrl.DGain = 5

See also

Property PGain, IGain, SetPoint

7.20.1.3 ZController::ErrorInputGain

Returns or set the amplification of the error input signal.

Syntax

zctrl.ErrorInputGain [= gain]

Setting

Argument Type Description

gain long Defines the amplification of the difference between input signal and
set point value prior the ADC as the exponent of 2. Valid values are
0 .. 4.

Remarks

Not available with C3000!

The error input amplifier is a analog circuit which can enhance the sensitivity of the z-
feedback controller signal input. Event so that the input sensitivity is high for very
smooth surfaces and special samples a increasing of the input sensitivity is desired.
With this property the amplification can be set up to 16 in steps of power of two. The
property value is the exponent for the number two.

431Object Reference

©2022 by Nanosurf, all rights reserved

Actual error gain is calculated:

amplification = 2 ^ ErrorInputGain

Note that by increasing the amplification the maximal signal range is decreasing
proportionally!

Example

' set the preamplifier to 8 = 2 ^4

objZCtrl.ErrorInputGain = 4

See also

Property SetPoint

7.20.1.4 ZController::SetPointForceUnitMode

Defines used unit for the static force setpoint

Syntax

zctrl.SetPointForceUnitMode [= index]

Argument

Argument Type Description

index long Defines the unit of the deflection signal.

Remarks

For Static Force Mode AFM different signal units for the setpoint could be of interest.
How the SetPoint is interpreted is defined by this property.

The following mode indexes are defined:

DefUnitMode_V = 0,
 DefUnitMode_m = 1,
 DefUnitMode_N = 2,

See also

objScanHead.DeflectionUnitMode

432 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

7.20.1.5 ZController::IGain

Returns or set the integral gain of the z-feedback controller.

Syntax

zctrl.IGain [= gain]

Setting

Argument Type Description

gain double Defines the amplification of the accumulating sum of the difference
between input signal and set point value. Valid values are 0 ..
32767. For C3000 controller [0 ... 2 2̂4]

Remarks

The I-Gain is defining the amplification of sum of the difference between input signal
and the set point value. A higher amplification generates a faster response to a input
signal error and therefore the topography is reproduced better by the z-scanner. But a
gain value too high can lead to oscillation of the z feedback loop and amplifies also
noise from the input signal.

A value of zero switch of the integral gain completely.

Example

objZCtrl.IGain = 2000

See also

Property PGain, DGain, SetPoint

7.20.1.6 ZController::LoopMode

Returns or set the z-feedback loop mode.

Syntax

zctrl.LoopMode [= mode]

Setting

Argument Type Description

mode long Defines the z-feedback loop mode. See modes in the table below.

Remarks

433Object Reference

©2022 by Nanosurf, all rights reserved

Not available with C3000!

The z-feedback control loop can be in various states. This property defines them.

Standard operating for imaging needs Loopmode_Run for operation.
X/Y-Slope compensation and ZPlane offsets are always active and can be used to
move the tip without feedback control.

For states other than Loopmode_Run the risk of tip damaging is high.

Table of loop mode values and description:

State
No.

Name Description

0 Loopmode_Run Standard operating of feedback loop

1 Loopmode_Freeze Feedback controller is frozen at the last position. No
controlling of distance is performed.

2 Loopmode_StopAndClea
r

Feedback controller is stoped and integrator set to zero.
No distance controlling is performed.

See also

Class Scan

7.20.1.8 ZController::PGain

Returns or set the proportional gain of the z-feedback controller.

Syntax

zctrl.PGain [= gain]

Setting

Argument Type Description

gain double Defines the amplification of the difference between input signal and
set point value. Valid values are 0 .. 32767. For C3000 controller [0
... 2 2̂4]

Remarks

The P-Gain is defining the amplification of the input signal error compared to the set
point value. A higher amplification generates a faster response to a input signal error
and therefore the topography is reproduced better by the z-scanner. But a gain value
too high can lead to oscillation of the z feedback loop and amplifies also noise from the
input signal.

434 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

A value of zero switch of the proportional gain completely.

Example

objZCtrl.PGain = 10000

See also

Property IGain, DGain, SetPoint

7.20.1.10 ZController::SetPoint

Returns or set the reference value of the z controller.

Syntax

zctrl.SetPoint [= value]

Setting

Argumen
t

Type Description

value double Defines the reference value for the sensor signal from the scan
head.

Remarks

The set point is the reference value for the z-controller's input signal. The z-controller
tries to keep the sensor input signal as close to this reference value as possible by
moving the sensor tip in along the z-axis of the scanner.

The unit of these property depends on the operating mode selected by property
OperatienMode.OperatingMode.

Op. mode Input Signal Unit

STM Tunneling
Current

Ampere

Static AFM Deflection Newton

Dynamic AFM Amplitude Percentage of resonance peak [0 .. 100%]

Phase Contrast Amplitude Percentage of resonance peak [0 .. 100%]

Force Modulation Deflection Newton

Spreading
Resistance

Deflection Newton

If the operating mode is changed the set point changes to the last value defined for this
mode too.

435Object Reference

©2022 by Nanosurf, all rights reserved

Example

' dynamic force AFM mode: 50% of resonance peak height

objZCtrl.SetPoint = 50 '[%]

' spreading resistance mode: 10nN force

objZCtrl.SetPoint = 10e-9 '[N]

See also

Class OperatingMode

7.20.1.11 ZController::TipVoltage

Returns or set the sensors tip potential.

Syntax

zctrl.TipVoltage [= potential]

Setting

Argument Type Description

potential double Defines the potential applied to the tip in voltage.

Valid range from -10V to +10V.

Remarks

The potential on the tip can be defined with this property. This could be usefully to
compensate electrostatic charges.

Example

' set the tip voltage to -3.5V

objZCtrl.TipVoltage = -3.5

See also

None.

7.20.2 Methods

7.20.2.4 ZController::Retract

7.20.2.4 ZController::Retract

7.20.2.4 ZController::Retract

7.20.2.4 ZController::Retract

436 Script Programmers Manual

©2022 by Nanosurf, all rights reserved

Retract the sensor Tip.

Syntax

zctrl.Retract(pos)

Argument

Paramete
r

Type Description

pos short retract position. -32768 = pull back, +32767 release

8 Version history

List of changes in this document and the object reference

Software v3.10.1

Adaptations in Scanhead, Approach and System

Software v3.10.0

General improvements of interface descriptions for: Stage, Scan (Prescan), Spec, Video,

Corrections in ToC

Software v3.5.0

New Classes Stage and BatchManager

Software v3.4.0

Class Spec update for new Spectroscopy

	Frontpage
	Introduction
	Motivation
	What you can do
	What you cannot do
	How to proceed

	Scripting
	Embedded VBScript
	More Documentation
	Menu Script
	Script editor
	Run from file
	Scripts as menu items
	Script configuration

	Integration
	COM Automation
	Windows Scripting Host
	Visual C++
	Labview
	Python
	Others

	Tutorial
	Script "AutoImage"
	Start the application
	Preparing measurement
	Approaching the surface
	Scan a surface
	Withdraw tip from surface
	Simple image data analysis
	Document handling

	Script examples
	Imaging Adjust XY-Slope
	Create Height Histogram
	Erase glitch from line
	Export data to CSV with Header
	Timer controlled imaging
	Lithography

	Object Reference
	Application
	Properties
	Application::Approach
	Application::AutoExit
	Application::BatchManager
	Application::Litho
	Application::OperatingMode
	Application::Scan
	Application::ScanHead
	Application::ShowWindow
	Application::SignalIO
	Application::Simulation
	Application::Spec
	Application::SPMCtrlManager
	Application::Stage
	Application::StatusReadDelay
	Application::System
	Application::Video
	Application::Visible
	Application:GalleryHistoryAutoIndexing
	Application::ZController

	Methods
	Application::DocCount
	Application::DocCreate
	Application::DocDeleteAll
	Application::DocDeleteByName
	Application::DocDeleteByPos
	Application::DocGetActive
	Application::DocGetByName
	Application::DocGetByPos
	Application::GetGalleryHistoryDirectoryPath
	Application::GetGalleryHistoryFilenameIndex
	Application::GetGalleryHistoryFilenameMask
	Application::GetScriptDirectoryPath
	Application::IsObj
	Application::IsStartingUp
	Application::LoadCalibration
	Application::LoadChartArrangement
	Application::LoadDocument
	Application::LoadParameter
	Application::LoadWorkspace
	Application::Log
	Application::LogEx
	Application::LogUserMarker
	Application::PrintStatusMsg
	Application::SaveCalibration
	Application::SaveChartArrangement
	Application::SaveDocument
	Application::SaveParameter
	Application::SaveWorkspace
	Application::SetGalleryHistoryDirectoryPath
	Application::SetGalleryHistoryFilenameIndex
	Application::SetGalleryHistoryFilenameMask
	Application::SetScriptDirectoryPath
	Application::Sleep

	Approach
	Properties
	Approach::ApproachMaxSteps
	Approach::ApproachPos
	Approach::ApproachSpeed
	Approach::AutoReloadSettings
	Approach::AutoStartImaging
	Approach::ShowApproachDoneDialog
	Approach::WithdrawSteps

	Methods
	Approach::IsMoving
	Approach::ShowWindow
	Approach::StartAdvance
	Approach::StartApproach
	Approach::StartRetract
	Approach::StartWithdraw
	Approach::Status
	Approach::Stop

	BatchManager
	Properties
	BatchManager::CurrentPointIndex
	BatchManager::HasConfigurationFilename
	BatchManager::IsIdle
	BatchManager::IsPaused
	BatchManager::IsStopFlag
	BatchManager::IsUnconfigured
	BatchManager::IsWorking

	Methods
	BatchManager::AppendNewPointRecord
	BatchManager::AppendNewPointRecordFromCurrentPosition
	BatchManager::CreateNewConfiguration
	BatchManager::GetChangeSamplePosition
	BatchManager::GetConfigurationDescription
	BatchManager::GetPointRecordArgument
	BatchManager::GetPointRecordPoint
	BatchManager::GetReferencePosition
	BatchManager::GetScript
	BatchManager::LoadConfigurationFile
	BatchManager::MoveToChangeSamplePosition
	BatchManager::Pause
	BatchManager::RemovePointRecord
	BatchManager::SaveConfigurationFile
	BatchManager::SaveConfigurationFileEx
	BatchManager::SetChangeSamplePosition
	BatchManager::SetConfigurationDescription
	BatchManager::SetPointRecordArgument
	BatchManager::SetPointRecordPoint
	BatchManager::SetReferencePosition
	BatchManager::SetScript
	BatchManager::Start
	BatchManager::Stop

	Chart
	Properties
	Chart::Active
	Chart::AxisShow
	Chart::Filter
	Chart::Group
	Chart::Pos
	Chart::RangeAutoSet
	Chart::RangeCenter
	Chart::RangeSpan
	Chart::Signal
	Chart::Type
	Chart::ViewSize

	Methods
	Chart::CopyToClipboard
	Chart::GetDocument
	Chart::OptimiseRange

	Data
	Properties
	Data::AxisLineMin
	Data::AxisLineName
	Data::AxisLineRange
	Data::AxisLineUnit
	Data::AxisPointMin
	Data::AxisPointName
	Data::AxisPointRange
	Data::AxisPointUnit
	Data::AxisSignalMin
	Data::AxisSignalName
	Data::AxisSignalRange
	Data::AxisSignalUnit
	Data::BufferEmpty
	Data::CurrentLine
	Data::Lines
	Data::Points

	Methods
	Data::GetDocument
	Data::GetGroup
	Data::GetGroupID
	Data::GetLine / GetLine2
	Data::GetLineFlags
	Data::GetLineRAW / GetLineRAW2
	Data::GetPixel / GetPixel2
	Data::GetPixelRAW / GetPixelRAW2
	Data::GetSignal
	Data::SetLine / SetLine2
	Data::SetLineFlags
	Data::SetLineRAW / SetLineRAW2
	Data::SetPixel / SetPixel2
	Data::SetPixelRAW / SetPixelRAW2

	Document
	Properties
	Document::Name

	Methods
	Document::ChartCount
	Document::ChartCreate
	Document::ChartDeleteAll
	Document::ChartDeleteByPos
	Document::ChartGetActive
	Document::ChartGetByPos
	Document::DataCreate
	Document::DataDeleteAll
	Document::DataDeleteByName
	Document::DataDeleteByPos
	Document::DataDeleteGroup
	Document::DataGetActive
	Document::DataGetByName
	Document::DataGetByPos
	Document::DataGetGroupID
	Document::DataGetGroupName
	Document::DataGetGroupPos
	Document::DataGetSignalPos
	Document::DataGroupCount
	Document::DataSetGroupID
	Document::DataSetGroupName
	Document::DataSignalCount
	Document::InfoCount
	Document::InfoCreate
	Document::InfoDeleteAll
	Document::InfoDeleteByName
	Document::InfoDeleteByPos
	Document::InfoGetByName
	Document::InfoGetByPos
	Document::Load
	Document::Save
	Document::ShowWindow

	Info
	Properties
	Info::Name
	Info::Pos

	Methods
	Info::Count
	Info::DeleteAll
	Info::DeleteByName
	Info::DeleteByPos
	Info::GetByName
	Info::GetByPos
	Info::GetDocument
	Info::GetNameByPos
	Info::SetByName
	Info::SetByPos

	Litho
	Properties
	Litho::OperatingMode
	Litho::InactivePenMode

	Methods
	Litho::AddCmd_MoveTip
	Litho::AddCmd_PenDown
	Litho::AddCmd_PenUp
	Litho::AddCmd_SetPoint
	Litho::AddCmd_TipSpeed
	Litho::AddCmd_TipVoltage
	Litho::AddCmd_VibratingAmpl
	Litho::AddCmd_Wait
	Litho::ClearCmdList
	Litho::IsCapturing
	Litho::IsMoving
	Litho::IsScanning
	Litho::IsWorking
	Litho::Start
	Litho::StartCapture
	Litho::StartFrameUp
	Litho::Stop
	Litho::StopCapture
	Litho::StopFrameUp

	OperatingMode
	Properties
	OperatingMode::AutoFreqSearchRange
	OperatingMode::AutoReferencePhase
	OperatingMode::AutoVibratingFreq
	OperatingMode::ForceModAmpl
	OperatingMode::ForceModFreq
	OperatingMode::FreqSearchEnd
	OperatingMode::FreqSearchStart
	OperatingMode::FreqSearchStep
	OperatingMode::LeverExcitationMode
	OperatingMode::OperatingMode
	OperatingMode::PeakAmplReduction
	OperatingMode::PeakUpperSideBand
	OperatingMode::ReferencePhase
	OperatingMode::ShowFreqSearchChart
	OperatingMode::TipSignalMode
	OperatingMode::VibratingAmpl
	OperatingMode::VibratingFreq

	Methods
	OperatingMode::CaptureFreqSearchChart
	OperatingMode::FreqSearchResult
	OperatingMode::GetFreqSweepLine / GetFreqSweepLine2
	OperatingMode::IsFreqSearchRunning
	OperatingMode::IsPhaseSearchRunning
	OperatingMode::SearchReferencePhase
	OperatingMode::SearchVibratingFreq

	Scan
	Properties
	Scan::AutoCapture
	Scan::AutoDeleteBuffer
	Scan::AutoReadjustProbeEnabled
	Scan::AutoSlopeCorrection
	Scan::CenterPosX
	Scan::CenterPosY
	Scan::ContourEnabled
	Scan::FirstScanlineRep
	Scan::ImageHeight
	Scan::ImageWidth
	Scan::LineMode
	Scan::Lines
	Scan::LineScanning
	Scan::Measuremode
	Scan::Overscan
	Scan::Points
	Scan::ReadjustLiftHeight
	Scan::RelTipPos
	Scan::Rotation
	Scan::Scanmode
	Scan::Scantime
	Scan::SlopeX
	Scan::SlopeY
	Scan::SndScanDynamicAmplitude
	Scan::SndScanDynamicAmplitudeEnabled
	Scan::SndScanEnableDarkMode
	Scan::SndScanEnableKPFM
	Scan::SndScanForceModulationAmplitude
	Scan::SndScanForceModulationAmplitudeEnabled
	Scan::SndScanSndLockInExcitationAmplitude
	Scan::SndScanSndLockInExcitationAmplitudeEnabled
	Scan::SyncOutMode
	Scan::ZPlane
	Scan::PrescanSpeedup

	Methods
	Scan::Currentline
	Scan::DeleteBuffer
	Scan::GetFrameDir
	Scan::GetLine
	Scan::ImageSize
	Scan::IsCapturing
	Scan::IsPaused
	Scan::IsScanning
	Scan::IsScanningPrescan
	Scan::IsSlopeCorrectionRunning
	Scan::Pause
	Scan::ShowWindow
	Scan::Start
	Scan::StartCapture
	Scan::StartFrameDown
	Scan::StartFrameUp
	Scan::StartPrescan
	Scan::StopPrescan
	Scan::StartSlopeCorrection
	Scan::Stop
	Scan::StopCapture

	ScanHead
	Properties
	ScanHead::STMSensorStatus
	ScanHead::LaserPowerMode
	ScanHead::LaserPowerCurrent
	ScanHead::LaserPowerAbsolute
	ScanHead::LaserPower
	ScanHead::IsLaserControlable
	ScanHead::LaserOn
	ScanHead::LaserSetpoint
	ScanHead::IsExcitationLaserControllable
	ScanHead::ExcitationLaserOn
	ScanHead::ExcitationLaserSetpoint
	ScanHead::HeadName
	ScanHead::HeadID
	ScanHead::DetectorNormalPos
	ScanHead::DetectorLateralPos
	ScanHead::DeflectionUnitMode
	ScanHead::CurrentSpringConst
	ScanHead::CurrentDeflectionZCompensation
	ScanHead::CurrentDeflection
	ScanHead::CantileverByGUID
	ScanHead::Cantilever
	ScanHead::AprroachMotorMode
	ScanHead::ApproachMotorStatus
	ScanHead::ApproachMotorPosition
	ScanHead::AFMSensorStatus
	ScanHead::InvertedUserOutput1
	ScanHead::InvertedUserOutput2
	ScanHead::ThermalTuning

	Methods
	ScanHead::AdjustDetectorNormalOffset
	ScanHead::GetAFMSensorStatusMeterRange
	ScanHead::GetCantileverProperty
	ScanHead::GetCalibrationSignalMax
	ScanHead::SetCalibrationSignalMax
	ScanHead::GetCalibrationSignalName
	ScanHead::SetCalibrationSignalName
	ScanHead::GetCalibrationSignalUnit
	ScanHead::SetCalibrationSignalUnit
	ScanHead::IsApproachMotorStatusDataValid
	ScanHead::IsDetectorStatusDataValid
	ScanHead::IsSensorStatusDataValid
	ScanHead::SetCantileverProperty
	ScanHead::TriggerApproachMotorStatus
	ScanHead::TriggerDetectorStatus
	ScanHead::TriggerSensorStatus

	SignalIO
	Properties
	SignalIO::EnableUserADC0
	SignalIO::EnableUserADC1
	SignalIO::ExcitationMode
	SignalIO::MonitorOut0
	SignalIO::MonitorOut1
	SignalIO::TipSignalMode
	SignalIO::User0CtrlMode
	SignalIO::User0IGain
	SignalIO::User0InputPol
	SignalIO::User0OutputFlag
	SignalIO::User0SetPoint
	SignalIO::UserDAC0
	SignalIO::UserDAC1

	Spec
	Properties
	Spec::ActiveZController
	Spec::AutoCapture
	Spec::AutoRecalibrateProbe
	Spec::AutoRecalibrateProbeInterval
	Spec::BwdModDatapoints
	Spec::BwdModulationMode
	Spec::BwdModulationRange
	Spec::BwdModulationStopMode
	Spec::BwdModulationStopValue
	Spec::BwdModulationTime
	Spec::BwdMoveSpeed
	Spec::BwdPauseDatapoints
	Spec::BwdPauseMode
	Spec::BwdPauseTime
	Spec::BwdSamplingRate
	Spec::CurrentModulationPhase
	Spec::EnableRelative
	Spec::FwdModDatapoints
	Spec::FwdModulationMode
	Spec::FwdModulationRange
	Spec::FwdModulationStopMode
	Spec::FwdModulationStopValue
	Spec::FwdModulationTime
	Spec::FwdMoveSpeed
	Spec::FwdPauseDatapoints
	Spec::FwdPauseMode
	Spec::FwdPauseTime
	Spec::FwdSamplingRate
	Spec::LineMin
	Spec::LinePoints
	Spec::LineRange
	Spec::ModulatedOutput
	Spec::ModuleLevel
	Spec::PositionListCount
	Spec::Repetition
	Spec::RepetitionMode
	Spec::Sequence
	Spec::SpecEndMode
	Spec::StartOffset
	Spec::SyncOutMode

	Methods
	Spec::AddPosition
	Spec::ClearPositionList
	Spec::Currentline
	Spec::GetLine
	Spec::GetLine2
	Spec::IsCapturing
	Spec::IsMeasuring
	Spec::IsMoving
	Spec::ShowWindow
	Spec::Start
	Spec::StartCapture
	Spec::StartMoveTipTo
	Spec::Stop
	Spec::StopCapture

	SPMCtrlDataStream
	Methods
	SPMCtrlDataStream::ActivateSocketStreamingInterface

	Properties
	SPMCtrlDataStream::MonitoringChannelMap
	SPMCtrlDataStream::MonitoringChannelUnits

	SPMCtrlManager
	Properties
	SPMCtrlManager::DataStream

	Stage
	Properties
	Stage::HasInstance
	Stage::HasPositionReached
	Stage::IsReferenced

	Methods
	Stage::AppendToMoveTransaction
	Stage::ClearMoveTransaction
	Stage::CloseInstance
	Stage::CommitMoveTransaction
	Stage::EmergencyStop
	Stage::GetAxisName
	Stage::GetAxisPosition
	Stage::GetAxisPositionMonitoring
	Stage::GetAxisRange
	Stage::GetAxisUnit
	Stage::GetAxisValue
	Stage::GetCurrentAxisZeroPosition
	Stage::GetSpeedPercent
	Stage::GetState
	Stage::GetTransactionCommitCount
	Stage::Lock
	Stage::ReferenceSearch
	Stage::SetAxisZero
	Stage::SetSpeedPercent
	Stage::SetTransactionDependentApproachMove
	Stage::SetTransactionNoOrthoCorrection
	Stage::SetTransactionNoSecureMove
	Stage::SetupInstance
	Stage::SetZero
	Stage::SpecialOperationAxis
	Stage::SpecialOperationController
	Stage::SpecialOperationView
	Stage::Stop
	Stage::Unlock

	System
	Properties
	System::MeasurementEnvironment
	System::SystemHealthState
	System::SystemState
	System::SystemStateIdleZAxisMode
	System::SystemStateIdleZAxisValue
	System::SystemStateIdleDAC1Mode
	System::SystemStateIdleXYAxisMode

	Methods
	System::MotorMove
	System::MotorStep
	System::MotorStop
	System::ForceMotorPosUpdate
	System::MotorSetPosZero
	System::LevelScanhead
	System::MotorReference
	Systen::MotorReferenceAndMoveBack
	System::IsMotorReferenced
	System::GetMotorPosition

	Video
	Properties
	Video::Brightness
	Video::Contrast
	Video::Illumination
	Video::VideoSource

	Methods
	Video::Start
	Video::Shutdown
	Video::IsStarted
	Video::CopyFrame
	Video::CopyFrameMPX1
	Video::CopyFrameMPX2
	Video::SaveFrame
	Video::SaveFrameMPX1
	Video::SaveFrameMPX2

	Thermal Tune
	Properties
	ThermalTuning::FreqBandUpperBound
	ThermalTuning::FreqResolution
	ThermalTuning::BlockCount
	ThermalTuning::AverageType
	ThermalTuning::CantileverTemperature
	ThermalTuning::FreqLowerBound
	ThermalTuning::FreqUpperBound

	Methods
	ThermalTuning::Start
	ThermalTuning::Stop
	ThermalTuning::AutoSetupFrequencies
	ThermalTuning::GetCurrentBlockCount
	ThermalTuning::GetFrequencyList
	ThermalTuning::GetBlock
	ThermalTuning::GetCurrentAverage
	ThermalTuning::NsfCustomFit
	ThermalTuning::NsfCustomFitOnCurrentAverageAndBounds
	ThermalTuning:NsfCustomFitOnCurrentAverage
	ThermalTuning:NsfCustomFitCurve
	ThermalTuning:SimpleHarmonicOscFit
	ThermalTuning:SimpleHarmonicOscFitOnCurrentAverageAndBounds
	ThermalTuning:SimpleHarmonicOscFitOnCurrentAverage
	ThermalTuning:SimpleHarmonicOscFitCurve
	ThermalTuning:CalculateSpringConstant_Sader
	ThermalTuning:CalculateSpringConstant_Equipartition

	ZController
	Properties
	ZController::Algorithm
	ZController::DGain
	ZController::ErrorInputGain
	ZController::SetPointForceUnitMode
	ZController::IGain
	ZController::LoopMode
	ZController::PGain
	ZController::SetPoint
	ZController::TipVoltage

	Methods
	ZController::GetInputValue
	ZController::GetOutputValue
	ZController::IsRetracting
	ZController::Retract

	Version history

